
Oracle In-Database Hadoop:
When MapReduce Meets RDBMS

Xueyuan Su
∗

Computer Science
Yale University

New Haven, CT 06520
xueyuan.su@yale.edu

Garret Swart
Oracle Corporation

Redwood Shores, CA 94065
garret.swart@oracle.com

ABSTRACT
Big data is the tar sands of the data world: vast reserves of
raw gritty data whose valuable information content can only
be extracted at great cost. MapReduce is a popular paral-
lel programming paradigm well suited to the programmatic
extraction and analysis of information from these unstruc-
tured Big Data reserves. The Apache Hadoop implementa-
tion of MapReduce has become an important player in this
market due to its ability to exploit large networks of inex-
pensive servers. The increasing importance of unstructured
data has led to the interest in MapReduce and its Apache
Hadoop implementation, which has led to the interest of da-
ta processing vendors in supporting this programming style.

Oracle RDBMS has had support for the MapReduce
paradigm for many years through the mechanism of user
defined pipelined table functions and aggregation objects.
However, such support has not been Hadoop source com-
patible. Native Hadoop programs needed to be rewritten
before becoming usable in this framework. The ability to
run Hadoop programs inside the Oracle database provides a
versatile solution to database users, allowing them use pro-
gramming skills they may already possess and to exploit the
growing Hadoop eco-system.

In this paper, we describe a prototype of Oracle In-
Database Hadoop that supports the running of native
Hadoop applications written in Java. This implementation
executes Hadoop applications using the efficient parallel ca-
pabilities of the Oracle database and a subset of the Apache
Hadoop infrastructure. This system’s target audience in-
cludes both SQL and Hadoop users. We discuss the ar-
chitecture and design, and in particular, demonstrate how
MapReduce functionalities are seamlessly integrated within
SQL queries. We also share our experience in building such
a system within Oracle database and follow-on topics that
we think are promising areas for exploration.
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1. INTRODUCTION
As more commercial and social interactions are mediated

by computing technology and as the cost of storage contin-
ues to decrease, companies and individuals are creating and
recording these interactions for longer periods of time. This
data, colloquially called Big Data, is often unstructured and
processing this low information density data presents new
challenges for its owners. These challenges arise from the s-
cale of the data, the varied formats and complex techniques
needed to process it, and the often huge computational over-
head of doing this processing. If the contents of traditional
data warehouses can be compared to reserves of sweet crude
oil, unstructured data can be compared with tar sands: po-
tentially valuable information resources but requiring huge
inputs in energy and technology to exploit. With more busi-
nesses looking to extract value from their low density infor-
mation sources, data processing vendors are innovating to
meet customer needs.

MapReduce [18] and in particular the Apache Hadoop im-
plementation [1] of MapReduce, are promising tools for pro-
cessing massive unstructured data sets. The Hadoop eco-
system has been growing fast in recent years with parallel
programs (Nutch [3], Mahout [2], Solr [14], Cloudburst [7]),
parallel execution systems (Pig [4], Cascading [6], RHIPE
[13]), and parallel programming training being built on an
Apache Hadoop based infrastructure.

The Oracle RDBMS has had support for the MapRe-
duce paradigm for years through user defined pipelined ta-
ble functions and aggregation objects [19]. Many database
vendors, including Oracle, are providing connectors to allow
external Hadoop programs to access data from databases
and to store Hadoop output in databases [11, 12]. Aster
Data provides MapReduce extensions to SQL called SQL-
MapReduce for writing MapReduce programs within the
database [21]. However, like Oracle table functions, they
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are not source compatible with Hadoop. Native Hadoop
programs need to be rewritten before becoming usable in
databases.

There are several parallel execution systems built on top
of Hadoop [26, 27, 16, 24]. Usually queries are compiled to
a sequence of MapReduce jobs and these jobs are then ex-
ecuted on a Hadoop cluster. However native Hadoop com-
putations do not have the same performance characteristics
as commercial database systems or access to the same data
sources. Hybrid systems have been built that either give
Hadoop access to traditional DBMS [5] or allow Hadoop to
coordinate parallel queries over many traditional DBMS in-
stances [8].

In this project, we take one step further in the direction of
efficiently integrating the Hadoop programming model with
a parallel RDBMS. We have built a prototype library that
supports a Hadoop compatible MapReduce implementation
inside the Oracle RDBMS. The framework accepts native
Hadoop applications written in Java. These Hadoop appli-
cations are executed directly in the Oracle JVM and leverage
the scalability of the Oracle parallel execution framework.
The major advantages of this framework include:

• Source compatibility with Hadoop. Hadoop users are
able to run native Hadoop applications without any
changes to the programs themselves. Only some mi-
nor changes to the drivers are required. This is a
notable distinction from other solutions such as SQL-
MapReduce [21] or the existing Oracle table functions.

• Access to Oracle RDBMS resident data without the
need to move the data to a separate infrastructure.

• Minimal dependency on the Apache Hadoop infras-
tructure. The Oracle In-Database Hadoop framework
is not built on top of actual Hadoop clusters. The
physical query executions are managed by the Oracle
parallel query engine, not a Hadoop cluster.

• Greater efficiency in execution due to data pipelining,
the avoidance of barriers and intermediate data mate-
rialization in the Oracle implementation.

• Seamless integration of MapReduce functionality with
Oracle SQL. In addition to extending the standard
Hadoop Job class to allow for starting In-Database
Hadoop jobs, the prototype framework supports the
embedding of MapReduce table function into SQL
queries, allowing users to write sophisticated SQL s-
tatements that mix MapReduce functionality with tra-
ditional SQL.

We begin with the review of MapReduce and related work
in Section 2. In Section 3, we describe the general archi-
tecture and design of our prototype. We demonstrate how
MapReduce functionalities are seamlessly integrated with
SQL queries by simple examples. The implementation de-
tails are discussed in Section 4. Following that, Section 5 ex-
plores work that we find promising for future development.
Section 6 concludes the whole paper.

2. BACKGROUND AND RELATED WORK

2.1 MapReduce Programming Model
Many NoSQL systems, including MapReduce, adopt the

key/value pair as the data model. A MapReduce computa-
tion takes a set of input key/value pairs, and produces a set
of output key/value pairs. One round of the computation
is generally divided into three phases: Map, Shuffle, and
Reduce.
Map: <K1, V1> → {<K2, V2>, · · · }. The Map phase

executes the user defined mapper method to parse input
pairs and produce a set of intermediate pairs.
Shuffle: {<K2,V2>, · · · } → {<K2,{V2,· · · ,V2}>,
· · · }. The Shuffle phase, defined by the MapReduce library,
groups all intermediate values associated with the same
intermediate key together, so they are ready to be passed
to the Reduce phase.
Reduce: <K2,{V2,· · · ,V2}> → {<K3,V3>, · · · }. The

Reduce phase executes the user defined reducer method to
process the intermediate values associated with each distinct
intermediate key.

The following pseudo-code demonstrates such computa-
tion by a simple WordCount example. The mapper read-
s input records and produces <word, 1> as intermediate
pairs. After shuffling, intermediate counts associated with
the same word are passed to a reducer, which adds the counts
together to produce the sum.

map(String key, String value) {

for(each word w in value) {

EmitIntermediate(w, 1);

}

}

reduce(String key, Iterator values) {

int sum = 0;

for(each v in values) {

sum += v;

}

Emit(key, sum);

}

A complex MapReduce job might consist of a series of
Map-Shuffle-Reduce rounds. These rounds are generally ini-
tiated sequentially by the MapReduce application.

2.2 The Hadoop Implementation

2.2.1 Job Execution
Hadoop is a Java implementation of MapReduce paradig-

m managed by the Apache open source software community.
As shown in Figure 1, a Hadoop cluster consists of a small
number of master nodes and many worker nodes. Hadoop
MapReduce is generally used with the Hadoop Distributed
File System (HDFS). The HDFS NameNode runs on a mas-
ter node and keeps track of the data blocks distributed over
a set of worker nodes that are running the HDFS DataNode
service.

The JobTracker is part of the MapReduce system run-
ning on a master node. It accepts requests to run MapRe-
duce steps and assigns the map and reduce tasks making up
these steps to worker nodes. The TaskTracker on each work-
er node forks worker processes to process the data record-
s and call the map and reduce methods described above.
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Figure 1: The Hadoop implementation of MapRe-
duce.

The computation results are generally written back to the
HDFS at the end of each Map-Shuffle-Reduce round. In-
dividual map tasks are associated with InputSplits which
represent the input data that this map task is to process.
The JobTracker attempts to run the map task close to the
data that it is to read [20]. Often there is a one to one
mapping between an InputSplit and an HDFS data block.
Each local Hadoop task reads and writes the data records
via Java RecordReader and RecordWriter classes.

2.2.2 Hadoop Data Types
Many Java object types are immutable. Each time a new

value of such a type is needed, a new object instance is al-
located from the heap, initialized and when it is no longer
needed, garbage collected. For efficiency Hadoop has de-
fined its own hierarchy of “Writable” (mutable) types that
avoid the allocation and garbage collection overhead. With
Writable types, the Hadoop iteration framework repeated-
ly writes into the same object instance with a new value.
Hadoop programs that need to retain values from an earlier
iteration must clone or copy any values they wish to retain.

All such mutable types in Hadoop implement the inter-
face defined by org.apache.hadoop.io.Writable. Table 1
shows some examples of mappings between the basic Java
types and the corresponding Hadoop types. Hadoop client
programmers often define their own Writable types and pro-
vide serialization methods for them. The Keys and Values in
a Hadoop MapReduce program generally extend Writable.

Java immutable types Hadoop Writable types

int/Integer IntWritable

long/Long LongWritable

float/Float FloatWritable

double/Double DoubleWritable

String Text

boolean/Boolean BooleanWritable

Table 1: Basic Java and Hadoop types.

2.2.3 Job Configurations
Hadoop makes extensive use of configuration parameters

both for setting up MapReduce jobs and for configuring the
action of those jobs. Hadoop applications use a configura-
tion API that defines a hierarchy of configuration variables,
whose values are typically stored in files or specified in the
driver programs. Such configuration parameters are stored

in the Job class before the Hadoop job is executed. For ex-
ample, the following piece of code is taken from the driver of
org.apache.hadoop.examples.WordCount. It sets the map-
per and reducer classes, as well as the data types for the
output pairs.

job.setMapperClass(TokenizerMapper.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

2.2.4 Input and Output Formats
Hadoop Mappers and Reducers accept and produce in-

stances of their configured Key and Value classes. But
most data sources in use today store data in byte arrays
(files), not as sets of typed objects. To facilitate the paral-
lel transfer of large sets of typed data in and out of the
Hadoop MapReduce engine, the Hadoop framework has
defined the org.apache.hadoop.mapreduce.InputFormat

and org.apache.hadoop.mapreduce.OutputFormat classes.
InputFormat allows each map task to be assigned a por-
tion of the input data, an InputSplit, to process and
OutputFormat gives each reduce task a place to store its out-
put. These classes also produce the aforementioned one per
task RecordReader and RecordWriter instances and pro-
vide methods that can serialize data from object instances
to byte arrays and deserialize data from byte arrays to object
instances.

In Section 3 we will see how the Oracle In-Database
Hadoop uses a different mechanism for a similar purpose.

2.3 Other Hadoop-Related Database Systems
The Oracle Loader for Hadoop [11] is one of the Oracle

Big Data Connectors [10]. It is a Hadoop MapReduce appli-
cation that reads the physical schema of the target Oracle
table and accesses input data from an arbitrary Hadoop In-
putFormat, and then formats the input data into an internal
Oracle data representation that matches the target table’s
physical schema, including the partitioning and internal da-
ta type representations.

Quest data connector for Oracle and Hadoop [12] is a
plug-in to Apache Sqoop that allows data transfer between
external Hadoop clusters and databases. It helps exter-
nal Hadoop programs access data from databases and s-
tore Hadoop output in databases. SQL-MapReduce [21] is a
framework proposed by Aster Data for developers to write
SQL-MapReduce functions. With structures that are sim-
ilar to SQL statements, SQL-MapReduce functions rely on
SQL queries to manipulate the underlying data and pro-
vide input. This solution is not source compatible with the
original Hadoop. Users cannot run their native Hadoop pro-
grams directly in this framework. They need to rewrite the
Hadoop code to fit into SQL-MapReduce functions.

Pig Latin [26] is a language that combines the declara-
tive style of SQL and the procedural style of the low lev-
el MapReduce. Programmers who are more familiar with
procedural languages are provided with high-level data ma-
nipulation primitives such as projection and join, without
the need for writing the more declarative SQL statements.
The accompanying system, Pig, compiles Pig Latin into ex-
ecution plans that are executed on Hadoop. Hive [27] is
another open-source data warehousing solution built on top
of Hadoop. Different from Pig Latin that is mainly target-
ed at procedural language programmers, Hive’s target users
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are experienced SQL programmers and users of GUI based
tools that generate SQL queries. Hive supports queries ex-
pressed in HiveQL, a SQL-like declarative language. HiveQL
supports queries that include custom MapReduce scripts.
Queries written in HiveQL are compiled into MapReduce
jobs executed over Hadoop. Similar to Hive, Tenzing [24]
is a SQL query engine built on top of MapReduce. On ar-
rival of a SQL query, the query server parses the query into
an intermediate format that the optimizer could work on.
The optimized execution plan is then translated into one or
more MapReduce jobs. Each MapReduce job is submitted
to a master which carries out the physical execution. The
major distinction between Tenzing and Hive is that the for-
mer supports more complete SQL features.

HadoopDB [16] (recently commercialized as Hadapt [8]) is
a hybrid system that shards the data over a cluster of single-
node databases. Queries are executed as a MapReduce ap-
plication that executes queries on each local database, and
then combines the results using MapReduce. It aims for
database-like local performance and Hadoop scalability. An
extension to Hive called SMS (SQL to MapReduce to SQL)
planner is used to parse SQL queries into Hadoop jobs and
SQL subqueries to be executed on the single-node databases.

There are yet many other SQL-to-MapReduce translators
that we are not able to list here. However, to the best of
our knowledge, there are no database systems that (1) are
Hadoop source compatible, and (2) do not rely on actual
Hadoop infrastructure for computation.

3. ARCHITECTURE AND DESIGN
In this section we describe the general architecture of the

Oracle In-Database Hadoop prototype. We discuss several
design decisions that we made. We also use simple examples
to conceptually demonstrate how to write SQL queries that
incorporate MapReduce functionalities. Detailed discussion
of the actual implementations is deferred to Section 4.

3.1 Architecture
The general architecture is illustrated in Figure 2. The

framework relies on Oracle parallel query (PQ) engine to
partition the input data, instantiate mapper and reducer
tasks, and schedule the computation using the database’s
computing resources. Each task runs a pipelined table func-
tion implemented in Java. The data flowing through the In-
Database Hadoop system are cursors and tables of SQL:1999
objects [25]. The key/value nature of Hadoop data is mod-
eled by defining each row with a key and a value field. These
fields may have any SQL type, and may be SQL:1999 objects
themselves.

Each SQL task reads input data from a TableReader, au-
tomatically converting the incoming SQL data types to the
corresponding Hadoop data types and supplying them to the
tasks. Each SQL task writes its output to a TableWriter,
converting the outgoing data from Hadoop to SQL data
types. The query results are returned to the user from
the PQ engine. Hadoop applications can be accessed from
database tables, external tables, and object views. The
TableReader and TableWriter classes implement Hadoop
RecordReader and RecordWriter interfaces, respectively.

The ability to embed the Hadoop Writable instances into
SQL:1999 objects, is an important part of the embedding.
While it might be possible to embed Hadoop instances into
SQL rows as byte arrays containing the serialized Writables,
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Figure 2: The architecture of Oracle In-Database
Hadoop.

the operations like equality and comparison might not ap-
ply meaningfully, and mixing SQL with Hadoop would not
work nearly as well. In addition to object types, SQL:1999
defines Object Views which allow for the declarative map-
ping between objects and relational data. This allows a
programmer who wants to make arbitrary SQL data avail-
able to a Hadoop application to define an object view that
implements this mapping. In some ways the object view
is a declarative replacement for the InputFormat and the
deserializer as used in Hadoop.

3.2 Map and Reduce Steps as Table Functions
The shuffle phase of MapReduce is performed by the PQ

engine, while both map and reduce phases are implemented
by pipelined table functions. Pipelined table functions were
introduced in Oracle 9i as a way of embedding procedural
logic within a data flow. Table functions take a stream of
rows as an input and return a stream of rows as output.
They can appear in the FROM clause and act like a normal
cursor. In the example below, Table_Func is a user-defined
table function.

SELECT * FROM TABLE

(Table_Func(CURSOR(SELECT * FROM InTable)))

Pipelined Table Functions are embedded in the data flow, al-
lowing data to be streamed to a SQL statement and avoiding
intermediate materialization in most cases. Pipelined table
functions take advantage of the parallel capabilities of the
Oracle database and can run on multiple slaves within an in-
stance, and on Oracle RAC or Oracle Exadata, on multiple
instances within a cluster.

One interesting design question is how to specify which
Hadoop job configuration parameters should be used by a
pipelined table function. A typical Hadoop job requires
many parameters, and usually configures them in config-
uration files and drivers. Such parameters are stored in a
configuration object in the Java domain. On the other hand,
table functions are called from within the SQL domain. It
would be awkward and error-prone if database users need
to provide long chains of parameters in a SQL statement.
We made the decision that such configuration parameters
should be stored in a Java object. However, we create a
link to each configuration object in the database domain.
A retrieval key is provided to the table function allowing
the configuration parameters to be accessed from the Java
domain.

Thus the map and reduce table functions in our framework
take two parameters, one for the input cursor, and the other
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one for the configuration retrieval key. We place the config-
uration key first because the cursor argument often contains
embedded SQL and can be quite long. For example,

SELECT * FROM TABLE

(Word_Count_Mapper(:ConfKey,

CURSOR(SELECT * FROM InTable)))

The pipelined table function Word_Count_Mapper takes in-
put data from the table InTable, retrieves the configuration
object with the key ConfKey, and executes the user-defined
map function from the WordCount Hadoop application. One
could easily use a nested SQL query to get the full function-
ality of the WordCount application.

INSERT INTO OutTable

SELECT * FROM TABLE

(Word_Count_Reduce(:ConfKey,

CURSOR(SELECT * FROM TABLE

(Word_Count_Map(:ConfKey,

CURSOR(SELECT * FROM InTable))))))

The output from Word_Count_Map is partitioned by key and
streamed to Word_Count_Reduce whose output is inserted
into OutTable. Each table function performs one of the
MapReduce phases.

In this way, users write SQL queries that integrate the
Map and Reduce functionalities in an intuitive way. All the
computation details are hidden from users and handled by
the Oracle parallel query engine. In addition, this approach
greatly generalizes the MapReduce model due to the flexibil-
ity of SQL. Many interesting use cases become easy to write,
such as Reduce only, or Map-Map-Reduce-Map-Reduce, etc.
Each table function can potentially be supplied with differ-
ent configuration parameters. For instance,

SELECT * FROM TABLE

(Total_Count_Reduce(:Key1,

CURSOR(SELECT * FROM TABLE

(Word_Count_Reduce(:Key2,

CURSOR(SELECT * FROM TABLE

(Word_Count_Map(:Key3,

CURSOR(SELECT * FROM InTable)))))))))

For Hadoop jobs that involves multiple rounds, the PQ
engine and pipelined table functions allow partial result-
s from the previous round to be streamed into the nex-
t round, which increases the opportunities for parallelism.
The database framework also takes care of the storage of
the intermediate results from previous round, which avoids
the materialization of intermediate data.

We want to point out that in the actual implementation,
users do not need to define application specific table func-
tions. Instead, output type specific functions are sufficient
for the purpose. We will revisit this point in Section 4.

3.3 Hadoop Programming Interface
The Oracle In-Database Hadoop prototype also provides

an interface for Hadoop programmers to execute their ap-
plications in the traditional Java way. Users write the ap-
plication drivers to specify the configuration parameters of
the job. Following that, a call to the Job.run method puts
the job into execution. See Appendix A.1 for the example
code from oracle.sql.hadoop.examples.WordCount.

4. IMPLEMENTATION
To allow us to develop on the currently shipping product,

we made the decision to develop our In-Database Hadoop
prototype on Oracle Database 11g release 2. This version
of Oracle database includes an Oracle Java virtual machine
compatible with JDK 1.5. For the Hadoop side, we are
supporting the version 0.20.2. This was the most wide-
ly used and stable release of Apache Hadoop at the time.
While this release nominally requires Java 1.6, it is large-
ly compatible with Java 1.5 as supported by Oracle 11.2.
The Hadoop source files were downloaded from Apache and
compiled with Java 1.5. We implemented this prototype of
Oracle In-Database Hadoop only using documented features
of Oracle 11.2.

4.1 Software Components
The software implementation spans across both Java and

SQL domains. Figure 3 illustrates the major components.
We introduce the roles of each component here and discuss
some important aspects in details in the corresponding sub-
sections.
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Figure 3: The implemenation of Oracle In-Database
Hadoop.

The mapreduce_pkg package defines the input data types
from the SQL side, which are used in the definition of the
pipelined table functions. The package in the Java domain
is the core of the framework. This major part of the package
includes the following classes:

• Job is the only class in the framework that a Hadoop
user would directly interact with. It is the job submit-
ter’s view of the job. It allows the user to configure the
job and run it. This implementation provides similar
interfaces as in the original Hadoop implementation
for users to set up the configuration parameters. It al-
so supports creating tables, PL/SQL object types and
table functions.

• ConfigManager provides interfaces for parsing
command-line options, storing and retrieving job
configuration objects. After setting up the con-
figuration parameters in Job, the framework relies
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on ConfigManager to pass the parameters among
different components within itself.

• ConfigDBStore implements methods to interact with
the data storage domain to store and retrieve Java ob-
jects. ConfigManager is build on top of ConfigDBStore
and no other Java components in the framework direct-
ly interact with ConfigDBStore.

• MapperImpl and ReducerImpl implement the Oracle
pipelined table functions for mapper and reducer class-
es, respectively. User defined Hadoop programs are
called during the execution of the table functions.

• TaskStoredCtx is the base class to store task context
for Oracle external table function implementations.

• TableReader and TableWriter extend RecordReader

and RecordWriter from the Hadoop package, respec-
tively. They support reading from and writing to
database tables from the Hadoop programs.

• DataTypeManager provides APIs for data type map-
ping between PL/SQL and Hadoop types. Hadoop has
defined its own hierarchy of “Writable” types for effi-
ciency purposes. As a result, standard JDBC drivers
[9] alone are not sufficient to convert Hadoop types.
DataTypeManager provides extensions to support the
mapping between SQL and Hadoop types.

4.2 Job Configuration
The Oracle In-Database Hadoop accepts configuration pa-

rameters in a Job class similar to the original Hadoop. This
class provides API to accept values from files, command-
line options, and function arguments. Users specify al-
l such configuration parameters in the driver before a
Hadoop job is executed. We extend the parameter set
to meet the requirement for the in-database environmen-
t. The basic configuration parameters and their default
values are listed in Table 2. See Appendix A.1 for an
example of configuring such parameters in the driver of
oracle.sql.hadoop.examples.WordCount.

As there are many rounds of context switching between
SQL and Java environments, the framework needs to be able
to pass the configuration parameters back and forth between
the SQL and Java domains. Instead of passing the value for
each configuration parameter directly, we made the design
decision that all the values will be stored in a single Java
configuration object, just as in Hadoop. The trick is then
to make sure that this configuration object is available to
all the processes that might call the Hadoop mappers or
reducers as part of the Oracle parallel execution plan.

We solved this problem by adding support for the stor-
ing and retrieving a Hadoop configuration object from a
row in the database using our own specialization of the
Hadoop ConfigManager. The role of a ConfigManager

in Hadoop is to create a configuration object from an
external data source. To manage this, we defined
oracle.sql.hadoop.ConfigDBStore class, to manage the s-
torage of a set of configuration objects inside a user table.
We use an Oracle SEQUENCE object to generate a retrieval
key for each configuration object. Java objects within the
configuration object are serialized and stored in a BLOB field
inside the object. Serialization and deserialization are done

Attribute Default

Mapper
MapperClass Identity

MapOutputKeyClass OutputKeyClass
MapOutputValueClass OutputValueClass

InputKeyClass LongWritable
InputValueClass Text

SchemaName current schema
InputTableName –

MapOutputKeyDBType OutputKeyDBType
MapOutputValueDBType OutputValueDBType

Reducer
ReducerClass Identity

OutputKeyClass LongWritable
OutputValueClass Text

OutputSchemaName SchemaName
OutputTableName –
OutputKeyDBType NUMBER

OutputValueDBType VARCHAR2(4000)

Table 2: Basic configuration parameters and the de-
fault values.

when the configuration object is stored and retrieved, re-
spectively.

To make this efficient, each Oracle slave process caches
its own copy of the configuration in private session memory
that is managed by the local Oracle instance.

One issue with this implementation is that even after a job
is completed or aborted, the configuration object remains
and the storage used for these objects can accumulate over
years. To handle this problem, we keep track of the keys
we add to the configuration table in a per session package
variable and then use a BEFORE LOGOFF trigger to delete the
rows we created. In this way, we miss the deletion of a
configuration object only if the session is still logged, and
if the system is “shutdown aborted”, which shuts down the
database without all the polite niceties.

A second issue, is that the creation of the configuration
object is only visible to slave processes after the transaction
inserting the row commits. To allow this transaction to com-
mit, without also committing other items, we use an Oracle
autonomous transaction. Such transactions can be nested
inside an outer transaction, but its commit, is independent
of the surrounding transaction.

We experimented with other Oracle database features
(cartridge services, temporary tables) that might have
worked for managing session based configuration manage-
ment, but making the configuration state visible across the
query slaves pushed us down this path.

4.3 SQL Data Types

4.3.1 Input Generics
Hadoop processes data records in form of <key, value>

pairs. The original Hadoop reads data blocks from HDF-
S and relies on InputFormat to parse data into record
pairs. For example, TextInputFormat is a popular choice in
Hadoop for plain text files. It breaks files into lines and re-
turns record of the form <LongWritable, Text>, where keys
are the line number in the file and values are the line of tex-
t. Hadoop users are responsible for configuring InputFormat
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and making sure it matches the input types of the Hadoop
program.

Different from the original Hadoop that reads input from
a file system, the In-Database Hadoop reads input from
database tables, external tables, and object views. There-
fore, each row of the input should include two fields. We
design the framework such that only tables with one or two
columns are accepted as the valid input for the In-Database
Hadoop.

For tables with two columns, it is natural to treat the first
one as the key field, and the second one as the value filed. For
tables with only one column, similar to TextInputFormat,
the framework by default generates a unique row id of
LongWritable type as the record key, and the data in the
single column is treated as the record value. This unique id
is computed from the special Oracle pseudo-column ROWID

and transformed into a unique 64-bit data value.
Different from the original Hadoop, our implementa-

tion does not require users to declare the input types vi-
a InputFormat. Instead, we are able to make the input
types generic with the ANYDATA type defined in PL/SQL.
An ANYDATA type is self-describing. It contains an instance
of a given type, plus a description of the type. We do
not require users actually store data in this format. We
only use this type in the definitions of the table func-
tions to indicate the acceptance of generic input types.
The actual parsing of the input types is deferred to be
done by TableReader. TableReader learns the Hadoop
input types of the user defined mapper/reducer function-
s via MapperImpl/ReducerImpl, and the SQL types in the
database storage via JDBC drivers. It then automatically
guarantees the matching of the input types when making
function calls to DataTypeManager.

We define the MapReduceInputType as a RECORD type
in the PL/SQL package mapreduce_pkg. Based on this
RECORD type, a CURSOR type inputcur is defined as
the input type of pipelined table functions.

TYPE MapReduceInputType IS RECORD (

KEYIN SYS.ANYDATA,

VALUEIN SYS.ANYDATA

);

TYPE inputcur IS REF CURSOR

RETURN MapReduceInputType;

4.3.2 Type-Specific Output
We did not want to require that all data created by a

Hadoop mapper or reducer be represented in SQL using the
ANYDATA type. Instead, we give users the freedom to use any
legal types that could be matched to Hadoop output types.
As a result, different from the input types that are made
generics, the output types must be specified for each table
function.

The SQL:1999 output types need to be configured for the
Hadoop jobs. For example, the following code specifies the
reducer key type to be VARCHAR2, and the value type to be
NUMBER.

job.setOutputKeyDBType("VARCHAR2(100)");

job.setOutputValueDBType("NUMBER");

Based on this type information, an OBJECT type is created
with the first field matching the key type and the second field
matching the value type. The TABLE of this OBJECT type

is then used in the table function definition as the return
type. We use the naming convention that includes output
key and value types as a suffix to uniquely identify such OB-
JECT types. These types are defined using dynamic SQL
as a side effect of creating the configuration object. For in-
stance, MAPOUT_<MAPOUTKEYTYPE>_<MAPOUTVALUETYPE> and
OUT_<REDOUTKEYTYPE>_<REDOUTVALUETYPE> are used in the
return types of the mapper and reducer table functions re-
spectively, where the data types in the brackets are the SQL
transliterations of the Hadoop mapper and reducer output
types.

CREATE TYPE OUT_VARCHAR2_NUMBER AS OBJECT (

KEYOUT VARCHAR2(100),

VALUEOUT NUMBER

);

CREATE TYPE OUTSET_VARCHAR2_NUMBER AS

TABLE of OUT_VARCHAR2_NUMBER;

The sample code first creates an OBJECT type with
VARCHAR2 and NUMBER being the key and value types, and
then creates the return type of the reducer table function as
the table of the OBJECT types.

4.3.3 Data Type Mapping Between SQL and Hadoop
JDBC, the Java Database Connectivity API, is the stan-

dard Call Level Interface for SQL database access from Java
[17]. It was developed for Java 1.1 in the early 1990s and
thus it is not surprising that standard JDBC drivers do not
support the direct data type mapping from SQL types to
Hadoop types. So to map data between SQL and Hadoop,
we must provide the extensions to support the conversion to
and from Hadoop types in a new module that we call the
DataTypeManager. In its current stage of development, it
maps an important subset of the Hadoop Writable types into
SQL - including scalar types, array types, and record types
- and vice versa. This mapping allows Hadoop programs
to interact with normal SQL processing. For example, table
functions embedded in SQL queries read SQL types from the
database, automatically convert them to the corresponding
Hadoop data types, execute the Hadoop functions, and fi-
nally convert the result back to SQL types. This conversion
is transparent to other components of the SQL query outside
the table functions themselves.

The Data type mapping is invoked in TableReader and
TableWriter. In TableReader accesses, SQL data from
the input cursor is accessed through a JDBC ResultSet

and the results are converted into the corresponding Write-
able types needed by the Hadoop mapper or reducer. In
TableWritable, given data produced by mappers or reduc-
ers, the DataTypeManager uses JDBC to convert them to
SQL types.

Scalar SQL types are quite simple. For scalar types, each
of TableReader and TableWriter maintains two Writable
objects, one for the key, and the other one for the val-
ue. These two objects are reused during each invocation
of the Hadoop program to avoid repeated memory alloca-
tion. SQL VARRAY types and OBJECT types are more interest-
ing. In JDBC these SQL types show up as java.sql.Array

and java.sql.Struct respectively. We need to map these
complex types into values that can be inserted into in-
stances of org.apache.hadoop.io.ArrayWritable and the
appropriate custom Writable classes. In order to make the
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mapping more efficient, TableReader and TableWriter each
maintains a pool of Writable objects, one for each field in
each compound data types. We reuse these objects between
Hadoop iterations to reduce allocations.

Our prototype insists that there be a one to one mapping
between Hadoop fields and SQL fields: there is no support
for Java annotation driven OR mapping, as in the Java Per-
sistence API [22]; instead we rely on careful creation of SQL
object views that match the structure of the Hadoop classes.

4.4 Pipelined Table Functions
Both the Map and Reduce phases are implemented by

pipelined table functions. A table function can be imple-
mented in C, Java, or PL/SQL. In particular, the current im-
plementation adopts Java as the natural choice. Implement-
ing table functions outside of PL/SQL is referred to as the
interface approach in the Oracle documentation. It requires
the system designers to supply an OBJECT type that im-
plements a predefined Oracle interface ODCITable that con-
sists of three methods: ODCITableStart, ODCITableFetch,
and ODCITableClose. This type is associated with the table
function when the table function is created.

During the execution of a table function, ODCITableStart
is invoked once by the PQ framework to initialize the s-
can context parameters, followed by repeated invocations of
ODCITableFetch to iteratively retrieve the results, and then
ODCITableClose is called to clean up. In our implementa-
tion of table functions, the three methods play the following
roles.

• ODCITableStart instantiates user provided Hadoop
mapper/reducer classes and gains access rights via Ja-
va reflection. It also accepts configuration parameters
to set up other related classes and methods.

• ODCITableFetch repeatedly invokes TableReader

to read data from the database, which calls
DataTypeManager to convert records into Hadoop type-
s. It then calls map/reduce routines to process the
data. After that it invokes TableWritable to write
the results back to the database with the help of
DataTypeManager.

• ODCITableClose cleans up the environment and re-
turns to the caller.

Readers are referred to Appendix A.2 for a sample decla-
ration of the ReducerImpl OBJECT type, which is used to
define a reducer table function. The actual Java implemen-
tation of the table function is a class that implements the
java.sql.SQLData interface.

Once the OBJECT types have been defined, we can
use them to define the pipelined table functions. The
naming of table functions follow the same convention
for the SQL output types. We create table function-
s named Map_<MAPOUTKEYTYPE>_<MAPOUTVALUETYPE> and
Reduce_<REDOUTKEYTYPE>_<REDOUTVALUETYPE> for the map-
pers and reducers, respectively. The definitions of ta-
ble functions are described below, where MapperImpl and
ReducerImpl are the corresponding OBJECT types that im-
plement the ODCITable interface.

CREATE OR REPLACE FUNCTION

Map_<MAPOUTKEYTYPE>_<MAPOUTVALUETYPE>

(jobKey NUMBER, p mapreduce_pkg.inputcur)

RETURN (

MAPOUTSET_<MAPOUTKEYTYPE>_<MAPOUTVALUETYPE>)

PIPELINED PARALLEL_ENABLE

(PARTITION p BY ANY)

USING MapperImpl;

CREATE OR REPLACE FUNCTION

Reduce_<REDOUTKEYTYPE>_<REDOUTVALUETYPE>

(jobKey NUMBER, p mapreduce_pkg.inputcur)

RETURN (

OUTSET_<REDOUTKEYTYPE>_<REDOUTVALUETYPE>)

PIPELINED PARALLEL_ENABLE

(PARTITION p BY hash(KEYIN))

CLUSTER p BY (KEYIN)

USING ReducerImpl;

In the definitions above, p of type mapreduce_pkg.inputcur

is the generic input type, jobKey is the re-
trieval key for the job configuration object.
MAPOUTSET_<MAPOUTKEYTYPE>_<MAPOUTVALUETYPE> and
OUTSET_<REDOUTKEYTYPE>_<REDOUTVALUETYPE> are the
specific output types. The partitioning of the input data
is indicated by the PARTITION BY clause of the map table
function. The Shuffle phase is indicated by the PARTITION

BY and CLUSTER BY clauses of the reduce table function. The
underlying PQ framework carries out the data partitioning
and shuffling based on the options specified in these clauses
before forking table function instances.

4.5 Hadoop SQL Queries Revisited
We revisit the Hadoop SQL queries in greater de-

tail with the WordCount example. In the Java domain,
the user needs to write a driver to configure the ap-
plication that includes the call to the Job.put method.
This method calls ConfigManager to store the job con-
figuration into the database, and returns the retrieval
key. The following sample code is the driver taken from
oracle.sql.hadoop.examples.WordCountConf.

public static BigDecimal jobKey()

throws Exception {

/* Create job configuration. */

Configuration conf = new Configuration();

Job job = new Job(conf, "word count");

/* Set mapper and reducer classes. */

job.setMapperClass(TokenizerMapper.class);

job.setReducerClass(IntSumReducer.class);

/* Set input and output Hadoop types. */

job.setInputKeyClass(Object.class);

job.setInputValueClass(Text.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

/* Set the output SQL types. */

job.setOutputKeyDBType("VARCHAR2(100)");

job.setOutputValueDBType("NUMBER");

/* Initialize environment and return the

retrieval key. */

job.init();

return job.put();

}
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Then a call specification for WordCountConf.jobKey is de-
fined in the SQL domain.

CREATE OR REPLACE FUNCTION WordCountConf()

RETURN NUMBER AS LANGUAGE JAVA NAME

’WordCountConf.jobKey()

return java.math.BigDecimal’;

A call to the function WordCountConf() executes the Java
program WordCountConf.jobKey() to set up the job envi-
ronment, create all the SQL types and the definitions of
pipelined table functions, and store the configuration object
into the database. The return value from the function call is
stored into the variable ConfKey as the retrieval key to the
configuration object from the SQL domain.

VARIABLE ConfKey NUMBER;

CALL WordCountConf(’’) INTO :ConfKey;

Finally the user makes the following query that takes in-
put data from the table InTable, retrieves the configuration
object with the key ConfKey, and executes the user-defined
WordCount Hadoop application.

SELECT * FROM TABLE

(Reduce_VARCHAR2_NUMBER(:ConfKey,

CURSOR(SELECT * FROM TABLE

(Map_VARCHAR2_NUMBER(:ConfKey,

CURSOR(SELECT * from InTable))))))

5. FURTHER DISCUSSIONS
In this section we further discuss several interesting top-

ics that we find relevant and promising. They suggest new
challenges and possible avenues for future work.

5.1 SQL Extensions for MapReduce
We define map table functions of the for-

m Map_<MAPOUTKEYTYPE>_<MAPOUTVALUETYPE>

and reduce table functions of the form
Reduce_<REDOUTKEYTYPE>_<REDOUTVALUETYPE> in the
current implementation. These table functions bridge
the gap between SQL and the users’ Hadoop programs.
They need to be created dynamically for each output type
because SQL is not able to deduce the output types by
looking at the configuration object. Therefore, users are
responsible for declaring and making sure that the table
functions being used match the output data type of the
Java class references in the configuration object.

To ease the difficulty of managing all these different table
functions, it is possible to consider a form of polymorphis-
m that allows the table function to compute its own output
type based on the types and values of its scalar input param-
eters. Such a type discovery method could be called during
the type checking of the SQL statement. For instance, with
this addition to the SQL language, queries could look like

SELECT * FROM TABLE

(Reduce(:cfg, CURSOR(SELECT * FROM TABLE

(Map(:cfg, CURSOR(SELECT * FROM InTable))))))

An alternate mapping of Hadoop into SQL can be devised
by using table valued user defined row functions to model
mappers and table valued user defined aggregators to model
reducers. However, the resulting SQL is harder to write and
without more work, slower to execute. The problem is that

mappers and reducers produce sets of records as output,
not single records. These sets must be flattened to form the
input for the next stage of the job. To do this flattening
we need a new SQL aggregate object that flattens a TABLE

OF TABLE OF <Key, Value> by concatenating them into a
single TABLE OF <Key, Value>. In addition, user defined
aggregators only accept row parameters. They currently do
not have a way of accepting either per call or per group
parameters, both of which are needed to emulate a Hadoop
reducer. For example,

SELECT FLATTEN(VALUE(ro)) FROM

(SELECT Reduce(:cfg, fmo.key, fmo.value) FROM

(SELECT FLATTEN(VALUE(mo)) FROM

(SELECT Map(:cfg, in.key, in.value) FROM in) mo

) fmo

GROUP BY fmo.key) ro

where FLATTEN is a new aggregate that takes an argument
that is a nested TABLE OF T and returns the concatenation
of these nested tables as a single nested table, Map is a row
function that returns a nested TABLE OF <K2, V2>, and fi-
nally Reduce is an aggregate object that accepts a static
configuration parameter, a per group key parameter of type
K2, and a per row value parameter of type V2 and returns
a nested TABLE OF <K3, V3>.

5.2 JDBC Extensions for Hadoop Types
As we described earlier, JDBC ResultSet produces new

instances of immutable Java types instead of mutating ex-
isting Hadoop Writable types. These instances have to
be allocated and then copied into Writable types by the
DataTypeManager. As a result, unnecessary allocations are
performed.

One important performance improvement is to support
the mutation of Hadoop types based on direct access to the
SQL stream, and similarly, the creation of a SQL stream
based on values extracted from Writable classes. In this
way, efficiency could be significantly improved by avoiding
new object allocation with every new record read from the
JDBC ResultSet.

Instead of teaching JDBC about Writable types direct-
ly and introducing an unfortunate dependency, a more ap-
pealing approach for improving data type mapping efficien-
cy might be to extend the existing ResultSet, SQLInput

and SQLOutput interfaces with non-allocating methods that
can be used to access the SQL data inside the result
set. For example, a VARCHAR on the SQL data stream
might copied into an existing Hadoop Text object by calling
readShort() to access the length of the VARCHAR followed
by readFully() to copy the data into a byte array that is
stored inside an existing Writable instance. A safer alter-
native could be for the ResultSet parser to call a per SQL
domain callback, passing it the data found in the stream
needed to reconstruct the data type.

5.3 MapReduce Jobs and Transactions
An interesting question related to database transactions

is that should each MapReduce job run as:

• A part of an enclosing transaction, like a parallel DML;

• A single atomic transaction, like CREATE TABLE AS

SELECT;

787



• Multiple transactions with commits along the way, like
sqlldr with the ROWS parameter.

The decision on which option to choose would affect other
design considerations. For example, running MapReduce in-
side of an enclosing transaction will require a lot of rollback
space. In addition, as a side effect of storing job configu-
ration state in a table, we have to COMMIT the changes
in order to make them visible to the PQ slaves. This re-
quires us to make the updates to the configuration table in
an autonomous transaction.

5.4 Input Format and Output Format Sup-
port

In our prototype, we have made the assumption that Or-
acle In-Database Hadoop reads input from database tables,
external tables, and object views, all of which are accessible
as SQL cursors. Through the Oracle Big Data Connectors,
the Oracle database can also efficiently access data that re-
sides on HDFS as an external table, whether the contents are
in a portable CSV format or the more efficient but propri-
etary Oracle DataPump format [15]. But not all data that
Oracle wants to access is present in a file system that Oracle
can access or in a data format that Oracle can parse. For this
reason it is useful to support access to data described by an
arbitrary Hadoop InputFormat, giving the Oracle database
access to any input that is readable by Hadoop. A user de-
fined InputFormat can access networked services or parse
data available in any mounted or user accessible file system.

Similarly, In-Database Hadoop output is also presented
in a SQL format. But if the output of a query is to be
consumed outside of the database, the use of an Hadoop
OutputFormat can facilitate its formatting and transport to
the destination.

In addition to external file systems, Oracle supports its
own internal file system, DBFS [23]. This file system can
supports access from either Oracle In-Database Hadoop,
or by standard Apache Hadoop. The advantage of this
approach is that (1) it does not require using an Apache
Hadoop job to convert data into an accessible format, (2)
it achieves even better compatibility because accessing data
through InputFormats and OutputFormats does not require
any changes to the Hadoop application driver.

6. CONCLUSION
Integrating Hadoop with SQL has significant importance

for both the database industry and the database users. In
this project, we have designed and implemented an Oracle
In-Database Hadoop prototype that accepts and executes
Hadoop programs written in Java and makes it possible to
invoke these programs naturally from SQL. We also provide
the traditional Java interface for Hadoop users to enable
them to execute Hadoop programs by submitting jobs in
the drivers.

A major distinction and advantage of this solution is its
Hadoop source compatibility. There is no need to rewrite
Hadoop code into a different language in order to execute it
in the databases, reducing training and deployment times.

The second important difference between our approach
and many other systems built on top of actual Hadoop clus-
ters is that, this system executes Hadoop applications using
the parallel capabilities of the Oracle database. By provid-
ing the Hadoop API without the Hadoop clusters, we allow

customers who have already invested in a database infras-
tructure, to avoid additional investment into a Hadoop clus-
ter, and to execute Hadoop jobs within their SQL databases.
This solution has further performance potentials due to the
avoidance of intermediate data materialization and barriers
inherent in the Hadoop driver architecture.

Finally and most importantly, we have integrated Hadoop
MapReduce functionality with SQL, providing customized
table functions such that Hadoop MapReduce steps can be
freely plugged into and mixed with SQL computations. This
allows SQL programmers to write sophisticated SQL state-
ments with a mix of SQL and MapReduce processing.

Providing this type of functionality in the database is part
of the data processing industry’s move towards a multi-data
source, multi-paradigm, and multi-platform future. Users
want to make independent choices of where they want to
store their data, how they want to program their data access,
and which platform they will use to execute that access. It
is the vendors’ job to provide technology that supports these
options and the tools to help manage them.
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APPENDIX
A. SAMPLE CODE

A.1 In-Database Hadoop WordCount driver

package oracle.sql.hadoop.examples.WordCount;

import oracle.sql.hadoop.Job;

public class WordCount {

public static void main() throws Exception {

/* Create job configuration. */

Configuration conf = new Configuration();

Job job = new Job(conf, "word count");

/* Set mapper and reducer classes. */

job.setMapperClass(TokenizerMapper.class);

job.setReducerClass(IntSumReducer.class);

/* Set input and output Hadoop types. */

job.setInputKeyClass(Object.class);

job.setInputValueClass(Text.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

/* Set the output SQL types. */

job.setOutputKeyDBType("VARCHAR2(100)");

job.setOutputValueDBType("NUMBER");

/* Set the input and output tables. */

job.setInputTableName("InTable");

job.setOutputTableName("OutTable");

/* Initialize environment and run the job. */

job.init();

job.run();

}

}

A.2 Declaration of the ReducerImpl OBJEC-
T type in PL/SQL

CREATE TYPE ReducerImpl AS OBJECT (

key INTEGER,

STATIC FUNCTION ODCITableStart(

sctx OUT ReducerImpl,

jobKey IN NUMBER,

cur IN SYS_REFCURSOR)

RETURN NUMBER AS LANGUAGE JAVA NAME

’oracle.sql.hadoop.ReducerImpl.ODCITableStart(

oracle.sql.STRUCT[],

java.sql.ResultSet,

java.math.BigDecimal)

return java.math.BigDecimal’,

MEMBER FUNCTION ODCITableFetch(

self IN OUT ReducerImpl,

nrows IN NUMBER,

outSet OUT OUTSET_<REDOUTKEYTYPE>_<REDOUTVALUETYPE>)

RETURN NUMBER AS LANGUAGE JAVA NAME

’oracle.sql.hadoop.ReducerImpl.ODCITableFetch(

java.math.BigDecimal,

oracle.sql.ARRAY[])

return java.math.BigDecimal’,

MEMBER FUNCTION ODCITableClose(

self IN ReducerImpl)

RETURN NUMBER AS LANGUAGE JAVA NAME

’oracle.sql.hadoop.ReducerImpl.ODCITableClose()

return java.math.BigDecimal’

);
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