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Abstract. Cloud Computing has been envisioned as the next-generation
architecture of IT Enterprise. It moves the application software and

databases to the centralized large data centers, where the man

the data and services may not be fully trustworthy. This uniqud oobooooon
brings about many new security challenges, which have not be(L] [ [J [0 [0 [0 [0 [
derstood. This work studies the problem of ensuring the integ [ [ [] [] [] []

storage in Cloud Computing. In particular, we consider the tassoramow=
ing a third party auditor (TPA), on behalf of the cloud client, to verify

the integrity of the dynamic data stored in the cloud. The intr

TPA eliminates the involvement of client through the auditing Dooooooo
his data stored in the cloud is indeed intact, which can be im gooooood
achieving economies of scale for Cloud Computing. The suppd[] [] [] []

dynamics via the most general forms of data operation, such as brocgTmoa=
ification, insertion and deletion, is also a significant step toward practical-
ity, since services in Cloud Computing are not limited to archive or backup
data only. While prior works on ensuring remote data integrity often lacks
the support of either public verifiability or dynamic data operations, this
paper achieves both. We first identify the difficulties and potential security
problems of direct extensions with fully dynamic data updates from prior
works and then show how to construct an elegant verification scheme for
seamless integration of these two salient features in our protocol design.
In particular, to achieve efficient data dynamics, we improve the Proof
of Retrievability model [I] by manipulating the classic Merkle Hash Tree
(MHT) construction for block tag authentication. Extensive security and
performance analysis show that the proposed scheme is highly efficient and
provably secure.

1 Introduction

Several trends are opening up the era of Cloud Computing, which is an Internet-
based development and use of computer technology. The ever cheaper and more
powerful processors, together with the “software as a service” (SaaS) computing
architecture, are transforming data centers into pools of computing service on a
huge scale. Meanwhile, the increasing network bandwidth and reliable yet flexible
network connections make it even possible that clients can now subscribe high
quality services from data and software that reside solely on remote data centers.
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356 Q. Wang et al.

Although envisioned as a promising service platform for the Internet, this
new data storage paradigm in “Cloud” brings about many challenging design
issues which have profound influence on the security and performance of the
overall system. One of the biggest concerns with cloud data storage is that of
data integrity verification at untrusted servers. For example, the storage service
provider, which experiences Byzantine failures occasionally, may decide to hide
the data errors from the clients for the benefit of their own. What is more serious
is that for saving money and storage space the service provider might neglect to
keep or deliberately delete rarely accessed data files which belong to an ordinary
client. Consider the large size of the outsourced electronic data and the client’s
constrained resource capability, the core of the problem can be generalized as how

can the client find an efficient way to perform periodical inte 00000
without the local copy of data files.

In order to solve this problem, many schemes are proposed under different sys-
tems and security models [2}[3]T]4L5L6L7,8,9,10]. In all these works, great efforts
are made to design solutions that meet various requirements: high scheme effi-
ciency, stateless verification, unbounded use of queries and retrievability of data,
etc. Considering the role of the verifier in the model, all the schemes presented be-
fore fall into two categories: private verifiability and public verifiability. Although
schemes with private verifiability can achieve higher scheme efficiency, public ver-
ifiability allows anyone, not just the client (data owner), to challenge the cloud
server for correctness of data storage while keeping no private information. Then,
clients are able to delegate the evaluation of the service performance to an indepen-
dent third party auditor (TPA), without devotion of their computation resources.
In the cloud, the clients themselves are unreliable or cannot afford the overhead of
performing frequent integrity checks. Thus, for practical use, it seems more ratio-
nal to equip the verification protocol with public verifiability, which is expected to
play a more important role in achieving economies of scale for Cloud Computing.
That is, the outsourced data themselves should not be required by the verifier for
the verification purpose. In the context of public verification, the importance of
blocklessness goes even further because an TPA should not be allowed to possess
the original data files for the obvious security concern.

Another major concern among previous designs is that of supporting dynamic
data operation for cloud data storage applications. In Cloud Computing, the re-
motely stored electronic data might not only be accessed but also updated by the
clients, e.g., through block modification, deletion and insertion. Unfortunately,
the state-of-the-art in the context of remote data storage mainly focus on static
data files and the importance of this dynamic data updates has received limited
attention in the data possession applications so far [2[TTLBIOTL6IA[T2]. Moreover,
as will be shown later, the direct extension of the current provable data posses-
sion (PDP) [2] or proof of retrievability (PoR) [3LI] schemes to support data
dynamics may lead to security loopholes. Although there are many difficulties
faced by researchers, it is well believed that supporting dynamic data operation
can be of vital importance to the practical application of storage outsourcing
services. In view of the key role of public verifiability and the supporting of data
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dynamics for cloud data storage, in this paper we present a framework and an
efficient construction for seamless integration of these two components in our
protocol design. Our contribution can be summarized as follows: (1) We propose
a general formal PoR model with public verifiability for cloud data storage, in
which both blockless and stateless verification are achieved simultaneously; (2)
We equip the proposed PoR construction with the function of supporting for fully
dynamic data operations, especially to support block insertion, which is missing
in most existing schemes; (3) We prove the security of our proposed construction
and justify the performance of our scheme through concrete implementation and
comparisons with the state-of-the-art.

1.1 Related Work

Recently, much of growing interest has been pursued in the context of remotely
stored data verification [2}8L11 4,561,718 OL T3, 1T, T415]. Ateniese et al. [2] de-
fine the “provable data possession” (PDP) model for ensuring possession of files
on untrusted storages. In their scheme, they utilize RSA-based homomorphic
tags for auditing outsourced data, thus can provide public verifiability. However,
Ateniese et al. do not consider the case of dynamic data storage, and the di-
rect extension of their scheme from static data storage to dynamic case brings
many design and security problems. In their subsequent work [I1], Ateniese et
al. propose a dynamic version of the prior PDP scheme. However, the system
imposes a priori bound on the number of queries and does not support fully
dynamic data operations, i.e., it only allows very basic block operations with
limited functionality and block insertions cannot be supported. In [I3], Wang
et al. consider dynamic data storage in distributed scenario, and the proposed
challenge-response protocol can both determine the data correctness and locate
possible errors. Similar to [I1], they only consider partial support for dynamic
data operation. Juels et al. [3] describe a “proof of retrievability” (PoR) model
and give a more rigorous proof of their scheme. In this model, spot-checking and
error-correcting codes are used to ensure both “possession” and “retrievability”
of data files on archive service systems. Specifically, some special blocks called
“sentinels” are randomly embedded into the data file F' for detection purpose
and F' is further encrypted to protect the positions of these special blocks. How-
ever, like [11], the number of queries a client can perform is also a fixed priori
and the introduction of pre-computed “sentinels” prevents the development of
realizing dynamic data updates. In addition, public verifiability is not supported
in their scheme. Shacham et al. [1] design an improved PoR scheme with full
proofs of security in the security model defined in [3]. Like the construction
in [2], they use publicly verifiable homomorphic authenticators built from BLS
signatures [L6] and provably secure in the random oracle model. Based on the
BLS construction, public retrievability is achieved and the proofs can be ag-
gregated into a small authenticator value. Still the authors only consider static
data files. Erway et al. [14] was the first to explore constructions for dynamic
provable data possession. They extend the PDP model in [2] to support prov-
able updates to stored data files using rank-based authenticated skip lists. This
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Fig. 1. Cloud data storage architecture

scheme is essentially a fully dynamic version of the PDP solution. In particular,
to support updates, especially for block insertion, they try to eliminate the index
information in the “tag” computation in Ateniese’s PDP model [2]. To achieve
this, before the verification procedure, they employ authenticated skip list data
structure to authenticate the tag information of challenged or updated blocks
first. However, the efficiency of their scheme remains in question. It can be seen
that while existing schemes are proposed to aiming at providing integrity ver-
ification under different data storage systems, the problem of supporting both
public verifiability and data dynamics has not been fully addressed. How to
achieve a secure and efficient design to seamlessly integrate these two important
components for data storage service remains an open challenging task in cloud
computing.

Organization. The rest of the paper is organized as follows. In section 2, we
define the system model, security model and our goal. Then, we present our
scheme in section 3 and provide security analysis in section 4. We further analyze
the experiment results and show the practicality of our schemes in section 5.
Finally, we conclude in section 6.

2 Problem Statement

2.1 System Model

A representative network architecture for cloud data storage is illustrated in
Fig. [ Three different network entities can be identified as follows: Client: an
entity, which has large data files to be stored in the cloud and relies on the
cloud for data maintenance and computation, can be either individual consumers
or organizations; Cloud Storage Server (CSS): an entity, which is managed by
Cloud Service Provider (CSP), has significant storage space and computation
resource to maintain clients’ data; Third Party Auditor (TPA): a TPA, which
has expertise and capabilities that clients do not have, is trusted to assess and
expose risk of cloud storage services on behalf of the clients upon request.

In the cloud paradigm, by putting the large data files on the remote servers,
the clients can be relieved of the burden of storage and computation. As clients
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no longer possess their data locally, it is of critical importance for the clients
to ensure that their data are being correctly stored and maintained. That is,
clients should be equipped with certain security means so that they can peri-
odically verify the correctness of the remote data even without the existence
of local copies. In case that clients do not necessarily have the time, feasibility
or resources to monitor their data, they can delegate the monitoring task to a
trusted TPA. To protect client data privacy, audits are performed without re-
vealing original data files to TPA. In this paper, we only consider verification
schemes with public verifiability: any TPA in possession of the public key can
act as a verifier. We assume that TPA is unbiased while the server is untrusted.
Note that we don’t address the issue of data privacy in this paper, as the topic of
data privacy in Cloud Computing is orthogonal to the problem we study here.
For application purposes, the clients may interact with the cloud servers via
CSP to access or retrieve their pre-stored data. More importantly, in practical
scenarios the client may frequently perform block-level operations on the data
files. The most general forms of these operations we consider in this paper are
modification, insertion, and deletion.

2.2 Security Model

Shacham and Waters propose a security model for PoR system in [I]. Generally,
the checking scheme is secure if (i) there exists no polynomial-time algorithm
that can cheat the verifier with non-negligible probability; (ii) there exists a
polynomial-time extractor that can recover the original data files by carrying out
multiple challenges-responses. Under the definition of this PoR system, the client
can periodically challenge the storage server to ensure the correctness of the
cloud data and the original files can be recovered by interacting with the server.
The authors in [I] also define the correctness and soundness of PoR scheme:
the scheme is correct if the verification algorithm accepts when interacting with
the valid prover (e.g., the server returns a valid response) and it is sound if any
cheating server that convinces the client it is storing the data file is actually
storing that file. Note that in the “game” between the adversary and the client,
the adversary has full access to the information stored in the server, i.e., the
adversary can play the part of the prover (server). In the verification process,
the adversary’s goal is to cheat the client successfully, i.e., trying to generate
valid responses and pass the data verification without being detected.

Our security model has subtle but crucial difference from that of the original
PoRs in the verification process. Note that the original PoR schemes [3IT[4J15] do
not consider dynamic data operations and the block insert cannot be supported
at all. This is because the construction of the signatures is involved with the file
index information ¢. Thus, once a file block is inserted, the computation overhead
is unacceptable since the signatures of all the following file blocks should be re-
computed with the new indexes. To deal with this limitation, we remove the index
information 7 in generating the signatures and use H(m;) as the tag for block
m; (see section 3.3) instead of H(namel|i) [I] or h(v||7) [3], so individual data
operation on any file block will not affect the others. Recall that H(namelli)
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or h(vl||i) should be generated by the client in the verification process [2][].
However, in our new construction the client without the data information has
no capability to calculate H (m;). In order to successfully perform the verification
while achieving blockless, the server should take over the job of computing H (m;)
and then return it to the prover. The consequence of this variance will lead to
a serious problem: it will give the adversary more opportunities to cheat the
prover by manipulating H(m;) or m;. Due to this construction, our security
model differs from that of the original PoR in both the verification and the data
updating process. Specifically, in our scheme tags should be authenticated in
each protocol execution other than calculated or pre-stored by the verifier (The
details will be shown in section 3). Note that we will use server and prover (or
client, TPA and verifier) interchangeably in this paper.

2.3 Design Goals

Our design goals can be summarized as the following: (1) Public verification for
storage correctness assurance: to allow anyone, not just the clients who originally
stored the file on cloud servers, to have the capability to verify the correctness
of the stored data on demand; (2) Dynamic data operation support: to allow
the clients to perform block-level operations on the data files while maintaining
the same level of data correctness assurance. The design should be as efficient
as possible so as to ensure the seamless integration of public verifiability and
dynamic data operation support; (3) Blockless verification: no challenged file
blocks should be retrieved by the verifier (e.g., TPA) during verification process
for both efficiency and security concerns. (4) Stateless verification: to eliminate
the need for state information maintenance at the verifier side between audits
throughout the long term of data storage.

3 The Proposed Scheme

3.1 Notation and Preliminaries

Bilinear Map. A bilinear map is a map e : G x G — Gr, where G is a Gap
Diffie-Hellman (GDH) group and Gy is another multiplicative cyclic group of
prime order p with the following properties [I6]: (i) Computable: there exists an
efficiently computable algorithm for computing e; (ii) Bilinear: for all hq,he € G
and a,b € Z,, e(h$,h%) = e(h1, ha)?; (iii) Non-degenerate: e(g, g) # 1, where g
is a generator of G.

Merkle Hash Tree. A Merkle Hash Tree (MHT) is a well-studied authenti-
cation structure [17], which is intended to efficiently and securely prove that a
set of elements are undamaged and unaltered. It is constructed as a binary tree
where the leaves in the MHT are the hashes of authentic data values. While
MHT is commonly used to authenticate the values of data blocks, However, in
this paper we further employ MHT to authenticate both the values and the po-
sitions of data blocks. We treat the leaf nodes as the left-to-right sequence, so
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any leaf node can be uniquely determined by following this sequence and the
way of computing the root in MHT.

3.2 Definition

(pk, sk) «+ KeyGen(1¥). This probabilistic algorithm is run by the client. It takes
as input security parameter 1%, and returns public key pk and private key sk.

(P, sigsi(H(R))) < SigGen(sk, F). This algorithm is run by the client. It takes
as input private key sk and a file F which is an ordered collection of blocks {m;},
and outputs the signature set @, which is an ordered collection of signatures {o;}
on {m;}. It also outputs metadata-the signature sigsi(H(R)) of the root R of a
Merkle hash tree. In our construction, the leaf nodes of the Merkle hash tree are
hashes of H(m;).

(P) « GenProof(F,®,chal). This algorithm is run by the server. It takes as

mput a file F, its signatures @, and a challenge chal. It outputs a data integrity
proof P for the blocks specified by chal.

{TRUE,FALSE} « VerifyProof(pk,chal, P). This algorithm can be run by
either the client or the third party auditor upon receipt of the proof P. It takes
as input the public key pk, the challenge chal, and the proof P returned from
the server, and outputs T RUEFE if the integrity of the file is verified as correct,
or FALSE otherwise.

(F', @, Pupdate) — ExecUpdate(F, &, update). This algorithm is run by the server.
It takes as input a file ', its signatures @, and a data operation request “update”
from client. It outputs an updated file F’, updated signatures @' and a proof Pypdate
for the operation.

{(TRUE, sigs,,(H(R'))), FALSE} — VerifyUpdate(pk, update, Pypdate). This
algorithm is run by the client. It takes as input public key pk, the signature
sigsk(H(R)), an operation request “update”, and the proof Pypdate from server.

If the verification successes, it outputs a signature sigs,,(H(R')) for the new root
R', or FALSE otherwise.

3.3 Our Construction

Given the above discussion, in our construction, we use BLS signature [I6] as
a basis to design the system with data dynamics support. As will be shown,
the schemes designed under BLS construction can also be implemented in RSA
construction. In the discussion of section 3.4, we will show that direct extensions
of previous work [2[T] have security problems and we believe that protocol design
for supporting dynamic data operation is a major challenging task for cloud
storage systems.

Now we start to present the main idea behind our scheme. As in the previous
PoR systems [3I[I], we assume the client encodes the raw data file F' into F' using
Reed-Solomon codes and divides the encoded file F' into n blocks my, ... 7m

1 We assume these blocks are distinct with each other.
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and output FALSE if fail;
6. Verify {m;}icr1.

Fig. 2. Protocols for Default Integrity Verification

where m; € Z, and p is a large prime. Let e : G x G — G be a bilinear map,
with a hash function H : {0,1}* — G, viewed as a random oracle [I]. Let g be
the generator of G. h is a cryptographic hash function. The procedure of our
protocol execution is as follows:

B Setup: The client’s public key and private key are generated by invoking
KeyGen(-). By running SigGen(-), the raw data file F' is pre-processed and the
homomorphic authenticators together with metadata are produced.

KeyGen(1*). The client chooses a random o Z,, and computes v < g*. The
secret key is sk = (a) and the public key is pk = (v).

SigGen(sk, F). Given F = (my,...,my), the client chooses a random element
u < G and computes signature o; for each block m; (i = 1,...,n) as g; «—
(H(m;) - u™)*. Denote the set of signatures by @ = {o;}, 1 <4 < n. The client
then generates a root R based on the construction of Merkle Hash Tree (MHT),
where the leave nodes of the tree are an ordered set of BLS hashes of “file tags”
H(m;) (i = 1,...,n). Next, the client signs the root R under the private key
a: sigsk(H(R)) < (H(R))“. The client sends {F, P, sigs,(H(R))} to the server
and deletes them from its local storage.

B Default Integrity Verification: The client or the third party, e.g., TPA,
can verify the integrity of the outsourced data by challenging the server. To
generate the message “chal”, the TPA (verifier) picks a random c-element subset
I = {s1,...,8.} of set [1,n], where we assume s < -+ < s.. For each i € T
the TPA chooses a random element v; < Z,. The message “chal” specifies the
positions of the blocks to be checked in this challenge phase. The verifier sends
the chal {(i,v;)}s,<i<s, to the prover (server).

GenProof(F,®,chal). Upon receiving the challenge chal = {(i,v;)}s, <i<s,, the
server computes

Se Sc
ﬂ:ZVimiEZp and J:HUZI-”EG.

i:sl i:sl
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In addition, the prover will also provide the verifier with a small amount of aux-
iliary information {2}, <i<s., which are the node siblings on the path from the
leaves {h(H (m;))}s <i<s, to the root R of the MHT. The prover responds the
verifier with proof P = {u, o, {H(m;), 2;}s,<i<s., sigsk(H(R))}.

VerifyProof(pk,chal, P). Upon receiving the responses from the prover, the
verifier generates root R using {H(m;), {2;}s, <i<s, and authenticates it by check-

ing e(sigsk(H(R)), g) < e(H(R), g%). If the authentication fails, the verifier re-
jects by emitting FALSE. Otherwise, the verifier checks

e(0,9) £ e( [ Hima) - ut,v),

i:sl

If so, output TRU E; otherwise FALSE. The protocol is illustrated in Fig. 2l

B Dynamic Data Operation with Integrity Assurance: Now we show how
our scheme can explicitly and efficiently handle fully dynamic data operations
including data modification (M), data insertion (Z) and data deletion (D) for
cloud data storage. Note that in the following descriptions for the protocol design
of dynamic operation, we assume that the file F' and the signature @ have already
been generated and properly stored at server. The root metadata R has been
signed by the client and stored at the cloud server, so that anyone who has the
client’s public key can challenge the correctness of data storage.

-Data Modification: We start from data modification, which is one of the
most frequently used operations in cloud data storage. A basic data modification
operation refers to the replacement of specified blocks with new ones.

Suppose the client wants to modify the i-th block m; to m}. The protocol pro-
cedures are described in Fig.[Bl At start, based on the new block m}, the client

!Y.u™:)®, Then, he constructs

generates the corresponding signature o = (H(m),
an update request message “update = (M,i,m},0.)” and sends to the server,
where M denotes the modification operation. Upon receiving the request, the
server runs FxecUpdate(F,®,update). Specifically, the server (i) replaces the
block m; with m} and outputs F”; (ii) replaces the o; with ¢, and outputs @';
(iii) replaces H(m;) with H(m!) in the Merkle hash tree construction and gener-
ates the new root R’ (see the example in Fig. H)). Finally, the server responses the
client with a proof for this operation, Pypdate = (2:, H(m;), sigsi(H(R)), R),
where (2; is the AAT for authentication of m;. After receiving the proof for modi-
fication operation from server, the client first generates root R using {§2;, H(m;)}

and authenticates the AAI or R by checking e(sigsi(H(R)),g) < e(H(R), g%).
If it is not true, output FALSFE, otherwise the client can now check whether the
server has performed the modification as required or not, by further computing
the new root value using {(2;, H(m})} and comparing it with R'. If it is not true,
output FALSE, otherwise output TRUE. Then, the client signs the new root
metadata R’ by sigsx(H(R')) and sends it to the server for update.

-Data Insertion: Compared to data modification, which does not change
the logic structure of client’s data file, another general form of data operation,
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Output FA lf fail.
5. Compute Rnew USlng

{£2;, H(m})}. Verify

update by checking

Roew LR Sign R’ if succeed. siga (H(R)),

6. Update R’s signature.

Fig. 3. The protocol for provable data update (Modification and Insertion)
goooooo

data insertion, refers to inserting new oooooooo
the data file F. oooooood

Suppose the client wants to insert block m* after the i-th block m,;. The
protocol procedures are similar to the data modification case (see Fig. Bl now
m} can be seen as m*). At start, based on m* the client generates the cor-
responding signature o* = (H(m*) - u™ )®. Then, he constructs an update
request message “update = (Z,i,m*,c*)” and sends to the server, where 7
denotes the insertion operation. Upon receiving the request, the server runs
ExecUpdate(F, @, update). Specifically, the server (i) stores m* and adds a leaf
h(H(m™*)) “after” leaf h(H (m;)) in the Merkle hash tree and outputs F”; (ii)
adds the o* into the signature set and outputs &’; (iii) generates the new root R’
based on the updated Merkle hash tree. Finally, the server responses the client
with a proof for this operation, Pypdate = (£2;, H(m;), sigsk(H(R)), R'), where
£2; is the AAI for authentication of m; in the old tree. An example of block
insertion is illustrated in Fig. Bl to insert h(H (m*)) after leaf node h(H (mz)),
only node h(H(m*)) and an internal node C' is added to the original tree, where
he = h(h(H (mz2))||h(H (m*))). After receiving the proof for insert operation from
server, the client first generates root R using {2;, H(m;)} and authenticates the
AAT or R by checking if e(sigsk (H(R)), g) = e(H(R), g%). If it is not true, output
FALSE, otherwise the client can now check whether the server has performed
the insertion as required or not, by further computing the new root value using
{2, H(m;), H(m*)} and comparing it with R’. If it is not true, output FALSE,
otherwise output TRUE. Then, the client signs the new root metadata R’ by
sigsk(H(R')) and sends it to the server for update.

ed positions in

-Data Deletion: Data deletion is just the opposite operation of data inser-
tion. For single block deletion, it refers to deleting the specified block and
moving all the latter blocks one block forward. Suppose the server receives the
update request for deleting block m;, it will delete m; from its storage space,
delete the leaf node h(H (m;)) in the MHT and generate the new root metadata
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h(n.) is replaced by h(n'2)

h(n1) h(ns)

Fig. 4. Example of MHT update under block modification operation. Here, n; and n,
are used to denote H(m;) and H(m;), respectively.

Insert h(n*) after h(n,)

Fig. 5. Example of MHT update under block insertion operation. Here, n; and n* are
used to denote H(m;) and H(m™), respectively.

Delete h(ns)

h(n1) h(nz) h(ns) h(ng) hns) h(ng) h(ns) h(ng) h(ni) h(nz) h(ns) h(ns) h(n7)  h(ng)
,,,,,,,,,,,,,,,,,,,,,,, e >

Fig. 6. Example of MHT update under block deletion operation

R’ (see the example in Fig.[d). The details of the protocol procedures are similar
to that of data modification and insertion, which are thus omitted here.

3.4 Discussion on Design Considerations

Instantiations based on BLS and RSA. As discussed above, we present a
BLS-based construction that offers both public verifiability and data dynamics.
In fact, our proposed scheme can also be constructed based on RSA signatures.
Compared with RSA construction [2,[I4], as a desirable benefit, the BLS con-
struction can offer shorter homomorphic signatures (e.g., 160 bits) than those
that use RSA techniques (e.g., 1024 bits). In addition, the BLS construction has
the shortest query and response (we does not consider AAT here): 20 bytes and
40 bytes [I]. However, while BLS construction is not suitable to use variable sized
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blocks (e.g., for security parameter A = 80, m; € Z,,, where p is a 160-bit prime),
the RSA construction can support variable sized blocks. The reason is that in
RSA construction the order of QR is unknown to the server, so it is impossible
to find distinct mq and ms such that ¢”™* mod N = ¢"2 mod N according to the
factoring assumption. But the block size cannot increase without limit, as the
verification block p = Zf;gl v;m; grows linearly with the block size. Recall that
h(H(m;)) are used as the MHT leaves, upon receiving the challenge the server
can calculate these tags on-the-fly or pre-store them for fast proof computation.
In fact, one can directly use h(¢g™¢) as the MHT leaves instead of h(H(m;)).
In this way at the verifier side the job of computing the aggregated signature
o should be accomplished after authentication of ¢™i. Now the computation of
aggregated signature o is eliminated at the server side, as a trade-off, additional
computation overhead may be introduced at the verifier side.

Support for Data Dynamics. The direct extension of PDP or PoR schemes
to support data dynamics may have security problems. We take PoR for exam-
ple, the scenario in PDP is similar. When m; is required to be updated, o; =
[H (namel|i)u™]* should be updated correspondingly. Moreover, H (namel|i)
should also be updated, otherwise by dividing o; by o}, the adversary can ob-
tain [u4™]% and use this information and Am; to update any block and its
corresponding signature for arbitrary times while keeping o consistent with p.
This attack cannot be avoided unless H (namel|i) is changed for each update op-
eration. Also, because the index information is included in computation of the
signature, an insertion operation at any position in F' will cause the updating
of all following signatures. To eliminate the attack mentioned above and make
the insertion efficient, as we have shown, we use H(m;) instead of H(namel|i)
as the block tags, and the problem of supporting fully dynamic data operation
is remedied in our construction. Note that different from the public informa-
tion namel|i, m; is no longer known to client after the outsourcing of original
data files. Since the client or TPA cannot compute H(m;), this job has to be as-
signed to the server (prover). However, by leveraging the advantage of computing
H(m,;), the prover can cheat the verifier through the manipulation of H(m;) and
m;. For example, suppose the prover wants to check the integrity of m; and mo
at one time. Upon receiving the challenge, the prover can just compute the pair
(0, 1) using arbitrary combinations of two blocks in the file. Now the response
formulated in this way can successfully pass the integrity check. So, to prevent
this attack, we should first authenticate the tag information before verification,
i.e., ensuring these tags are corresponding to the blocks to be checked.

Designs for Blockless and Stateless Verification. The naive way of realiz-
ing data integrity verification is to make the hashes of the original data blocks as
the leaves in MHT, so the data integrity verification can be conducted without
tag authentication and signature aggregation steps. However, this construction
requires the server to return all the challenged blocks for authentication, and thus
is not efficient for verification purpose. Moreover, due to concern for security in
the context of public verification, the original data files should not be revealed
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to TPA during verification process. To overcome these deficiencies, most exist-
ing works in remote data checking adopt a blockless strategy for data integrity
verification. For the same reason, this paper adopts the blockless approach, and
we authenticate the block tags instead of original data blocks in the verification
process. As we have described, in the setup phase the verifier signs the metadata
R and stores it on the server to achieve stateless verification. Making the scheme
fully stateless may cause the server to cheat: the server can revert the update
operation and keep only old data and its corresponding signatures after com-
pleting data updates. Since the signatures and the data are consistent, the client
or TPA may not be able to check whether the data is up to date. Actually, one
can easily defend this attack by storing the root R on the verifier, i.e., R can be
seen as public information. However, this makes the verifier not fully stateless
in some sense since TPA will store this information for the rest of time.

4 Security Analysis

Definition 1. (CDH Assumption) The Computational Diffie-Hellman
assumption is that, given g, g*,g¥ € G for unknown x,y € Zyp, it is hard to
compute g*Y.

Theorem 1. If the signature scheme is existentially unforgeable and the compu-
tational Diffie-Hellman problem is hard in bilinear groups, no adversary against
the soundness of our public-verification scheme could cause verifier to accept in
a proof-of-retrievability protocol instance with non-negligible probability, except
by responding with correctly computed values.

Theorem 2. Suppose a cheating prover on an n-block file F' is well-behaved in
the sense above, and that it is e-admissible. Let w = 1/4B + (pn)’/(n — c+ 1)°.
Then, provided that € — w is positive and non-negligible, it is possible to recover
a p-fraction of the encoded file blocks in O(n/(e — p)) interactions with cheating
prover and in O(n? + (1 +en?)(n)/(e — w)) time overall.

Theorem 3. Given a fraction of the n blocks of an encoded file F', it is possible
to recover the entire original file F' with all but negligible probability.

Due to space limitations, the detailed proofs of Theorems 1, 2 and 3 are provided
in the full version [18].

5 Performance Analysis

We list the features of our proposed scheme in Table[I] and make a comparison of
our scheme and state-of-the-art. The scheme in [I4] extends the original PDP [2]
to support data dynamics using authenticated skip list. Thus, we call it DPDP
scheme thereafter. For the sake of completeness, we implemented both our BLS
and RSA-based instantiations as well as the state-of-the-art scheme [I4] in Linux.
Our experiment is conducted using C on a system with an Intel Core 2 processor
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Table 1. Comparisons of different remote data integrity checking schemes. The security
parameter X is eliminated in the costs estimation for simplicity. * The scheme only
supports bounded number of integrity challenges and partially data updates, i.e., data
insertion is not supported. T No explicit implementation of public verifiability is given
for this scheme.

Scheme

Metric 2] [l [x- 14 Our Scheme
Data dynamics No Yes
Public verifiability Yes Yes No Nof Yes
Sever comp. complexity o) 0(Q1) 0O(1) O(logn) O(logn)
Verifier comp. complexity o(1) 0O(1) 0(1) O(logn) O(logn)
Comm. complexity o) 0(1) 0(1) O(logn) O(logn)
Verifier storage complexity o) 0(Q1) 0(1) O(1) o(1)

Table 2. Performance comparison under different tolerance rate p of file corruption
for 1GB file. The block size for RSA-based instantiation and scheme in [14] is chosen
to be 4KB.

Our BLS-based instantiation Our RSA-based instantiation [I4]

Metric \ Rate-p 99% 97% 99% 97% 99%
Sever comp. time (ms) 6.52 2.29 13.42 4.76 13.80
Verifier comp. time (ms) 1154.39 503.88 794.27 208.28 807.90

Comm. cost (KB) 243 80 223 76 280

N
S
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Fig. 7. Comparison of communication complexity between our RSA-based instantia-
tion and DPDP [I4], for 1 GB file with variable block sizes. The detection probability
is maintained to be 99%.

running at 2.4 GHz, 768 MB RAM, and a 7200 RPM Western Digital 250 GB
Serial ATA drive with an 8 MB buffer. Algorithms (pairing, SHA1 etc.) are
implemented using the Pairing-Based Cryptography (PBC) library version 0.4.18
and the crypto library of OpenSSL version 0.9.8h. To achieve 80-bit security
parameter, the curve group we work on has a 160-bit group order and the size
of modulus N is 1024 bits. All results are the averages of 10 trials. Table [ lists
the performance metrics for 1 GB file under various erasure code rate p while
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maintaining high detection probability (99%) of file corruption. In our schemes,
rate p denotes that any p-fraction of the blocks suffices for file recovery as proved
in Theorem 3, while in [14], rate p denotes the tolerance of file corruption.
According to [2], if ¢ fraction of the file is corrupted, by asking proof for a
constant ¢ blocks of the file, the verifier can detect this server misbehavior with
probability p = 1 — (1 —¢)°. Let t = 1 — p and we get the variant of this
relationship p = 1 — p°. Under this setting, we quantify the extra cost introduced
by the support of dynamic data in our scheme into server computation, verifier
computation as well as communication overhead.

From table 2] it can be observed that the overall performance of the three
schemes are comparable to each other. Due to the smaller block size (i.e., 20bytes),
our BLS-based instantiation is more than 2 times faster than the other two in terms
of server computation time. However, its has larger computation cost at the verifier
side as the paring operation in BLS scheme consumes more time than RSA tech-
niques. Note that the communication cost of DPDP scheme is the largest among
the three in practice. This is because there are 4-tuple values associated with each
skip list node for one proof, which results in extra communication cost as com-
pared to our constructions. The communication overhead (server’s response to the
challenge) of our RSA-based instantiation and DPDP scheme [14] under different
block sizes is illustrated in Fig.[[l We can see that the communication cost grows
almost linearly as the block size increases, this is mainly caused by the increasing
in size of the verification block p = Zf;sl v;m;. However, at very small block sizes
(less than 20KB), both schemes can achieve an optimal point that minimizes the
total communication cost.

6 Conclusion

To ensure cloud data storage security, it is critical to enable a third party au-
ditor (TPA) to evaluate the service quality from an objective and independent
perspective. Public verifiability also allows clients to delegate the integrity ver-
ification tasks to TPA while they themselves can be unreliable or not be able
to commit necessary computation resources performing continuous verifications.
Another major concern is how to construct verification protocols that can accom-
modate dynamic data files. In this paper, we explored the problem of providing
simultaneous public verifiability and data dynamics for remote data integrity
check in Cloud Computing. Our construction is deliberately designed to meet
these two important goals while efficiency being kept closely in mind. We ex-
tended the PoR model [I] by using an elegant Merkle hash tree construction to
achieve fully dynamic data operation. Experiments show that our construction
is efficient in supporting data dynamics with provable verification.
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