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Outline of the Lecture (Day 1)

 Morning Session

◦ Foundations of
Database, P2P, and
Distributed Systems

◦ Key Value Stores –
Design Principles

◦ Key Value Stores – A
survey of systems

 Afternoon Session

◦ CAP and Rethinking
Eventual Consistency

◦ Scale-out Transaction
Processing – Design
Principles
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Outline of the Lecture (Day 2)

 Morning Session

◦ Transactions on co-
located data – A
survey of systems

◦ Transactions on
distributed data – A
survey of systems

 Afternoon Session

◦ Multi-tenant database
systems – Design
Principles

◦ Database Elasticity

◦ Performance
Management in Multi-
tenant Database
Systems
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Material Covered

 Structure loosely follows
our book
 Many slides adapted

from presentations from
authors or relevant
papers
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Web replacing Desktop
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Paradigm shift in Infrastructure
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Cloud Computing
 Computing infrastructure

and solutions delivered as a
service
◦ Industry worth USD150 billion by

2014*

 Contributors to success
◦ Economies of scale
◦ Elasticity and pay-per-use pricing

 Popular paradigms
◦ Infrastructure as a Service (IaaS)
◦ Platform as a Service (PaaS)
◦ Software as a Service (SaaS)
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Cloud Computing: History
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Cloud Computing: Why Now?
• Experience with very large datacenters

– Unprecedented economies of scale
– Transfer of risk

• Technology factors
– Pervasive broadband Internet and smartphones
– Maturity in virtualization technology

• Business factors
– Minimal capital expenditure
– Pay-as-you-go billing model
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Databases for Cloud Platforms
 Data is central to applications
 DBMSs are mission critical component in

cloud software stack
◦ Manage petabytes of data, drive revenue
◦ Serve a variety of applications (multitenancy)
 Data needs for cloud applications

◦ OLTP systems: store and serve data
◦ Data analysis systems: decision support,

intelligence
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Application Landscape

 Social gaming

 Rich content and
mash-ups

Managed
applications

 Cloud application
platforms
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Data Serving in the Cloud
What do I mean by “data serving”?
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Challenges

 Fault-tolerance
◦ Replication

 Large scale data
◦ Partition data across multiple servers

 Managing the system state
 Must understand

◦ Database foundations
◦ Distributed systems foundations
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FOUNDATIONS OF
DATABASE, P2P, AND
DISTRIBUTED SYSTEMS
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Outline

 Transaction Processing Systems
◦ Concurrency control
◦ Recovery

 Distributed Systems
◦ Logical times and Clocks
◦ Leader election
◦ The consensus problem

 P2P Systems
◦ Consistent hashing & DHTs

July 28, 2013 VLDB Summer School 2013 16



CONCEPTS OF
TRANSACTION
PROCESSING IN RDBMS
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Data Management Evolution

• RDBMS (Relational Data Base Management
Systems) became highly successful:
– Widely adopted by both large and small business

entities
• Enterprises became increasingly reliant on

databases
• Primarily used for day-to-day operations:

– Banking operations
– Retail operations
– Travel industry
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Data Management Evolution
• Typically:

– Database modeled the state of the application
– Client operations were applied to update the state.

Database state
Modified

Database state
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Client
Operations

(Transactions)
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The OLTP Paradigm

• On-line Transaction Processing:
–Database state is up-to-date at all times

• Significant challenges:
–Multiple users/clients need to be supported
–Handle hardware and software failures

• Emergence of what is now commonly referred
to as:

–The Transaction Concept
VLDB Summer School 2013 20July 28, 2013



The Transaction Concept

• Multiple online users
–Gives rise to the concurrency problem

• Component unreliability:
–Gives rise to the failure problem

• Problems in the context of managing
persistent data
–Online transaction processing system  (OLTP)
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OLTP Example: Debit/Credit

VLDB Summer School 2013

void main ( ) {
EXEC SQL BEGIN DECLARE SECTION

int BAL, AID, amount;
EXEC SQL END DECLARE SECTION;

scanf (“%d %d”, &AID, &amount);  /* USER INPUT */

EXEC SQL Select Balance into :BAL From Account
Where Account_Id = :AID;  /* READ FROM DB */

BAL = BAL + amount; /* update BALANCE in memory*/

EXEC SQL Update Account
Set Balance = :b Where Account_Id = :AID;  /* WRITE INTO DB*/

EXEC SQL Commit Work;
}
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OLTP Example:A Social App

VLDB Summer School 2013

public void confirm_friend_request(user1, user2)
{
begin_transaction();

update_friend_list(user1, user2, status.confirmed);
update_friend_list(user2, user1, status.confirmed);

end_transaction();
}
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The Transaction Concept
• Developed as a paradigm to deal with:

– Concurrent access to shared data
– Failures of different kinds/types

• The key problem solved in an elegant manner:
– Subtle and difficult issue of keeping data consistent in

the presence of concurrency and failures

while ensuring performance, reliability, and
availability
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Preliminaries: Transactions
 A transaction is a set of operations executed in

some partial order

 A transaction is assumed to be correct, i.e., if
executed alone on a consistent database, it
transforms it into another consistent state

 Example: r1[x] r1[y] w1[x] w1[y] is an example of a
transaction t1 that transfers some amount of money
from account x to account y
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Correctness Requirements: ACID

• ATOMICITY:
–All-or-none property of user programs

• CONSISTENCY
–User program is a consistent unit of execution

• ISOLATION
–User programs are isolated from the side-effects

of other user programs

• DURABILITY:
–Effects of user programs are persistent forever
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Concurrency Control and
Correctness

 Goal:
◦ A technique/algorithm/scheduler that prevents

incorrect or bad execution.

 Develop the notion of correctness – or
characterize what does correct execution
means
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Serial History

 A history H is serial if for any two
transactions Ti and Tj in H, all operations
of Ti are ordered in H before all
operations of Tj or vice-versa

 Example:
◦ r1(x) r1(z) w1(x) c1 r2(x) w2(y) c2 r3(z) w3(y)

w3(z) c3
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General Idea for Correctness

 Equivalence of two histories H1 and H2.

 Use this notion of equivalence to accept all
histories which are “equivalent” to some
serial history as being correct.

 How to establish this equivalence notion?
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Serializability

A history is serializable if it is
equivalent to a serial history over the

same set of transactions.
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Conflicts and Serializability

 Operations on different objects do not
conflict.
 Reads on the same object do not conflict:

◦ R1[x] R2[x] = R2[x] R1[x]

 Operations on the same object, and at least
one of them is write conflict:
◦ R1[x] and W2[x], or
◦ W1[x] and W2[x]
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Concurrency Control Variants

 Locking

 Timestamp Ordering

 Optimistic Concurrency Control
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Locking Protocol
• For each step the scheduler requests a

lock on behalf of the step‘s transaction.
• Each lock is requested in a specific mode

– read or write

• If the data item is not locked in an
incompatible mode the lock is granted;

• Otherwise there is a lock conflict and the
transaction becomes blocked (suffers a
lock wait) until the current lock holder
releases the lock.
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Two Phase Locking Protocol
 The 2PL protocol:

1. On pi[x], if pli[x] conflicts delay it otherwise
set pli[x].

2. Once the scheduler has set pli[x] it may not
release it until the Data Manager has
acknowledged processing of pi[x].

3. Once the scheduler has released a
lock for a transaction, it may not
subsequently obtain any more locks
for that transaction (on any data
item).

VLDB Summer School 2013 34July 28, 2013



Two Phase Locking Protocol
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Locking Performance
• In a multiprogramming system, resource

contention arises over memory, processors, I/O
channels, etc.

• In a locking system, data contention arises due
to queues , which form due to conflicting
operations.

• Locking can cause thrashing
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Timestamp Ordering
• Associate with each transaction a timestamp.
• The CC protocol orders conflicting operations

according to timestamp order.
– If pi[x] and qj[x] are conflicting operations, then pi is

executed before qj if time(ti) < time(tj).
• Every object maintains: max_read and max_write.
• Read:  if time(ti) < max_write

– reject read
• Write: if time(ti) < max_read or time(ti) <

max_write
– reject write.

• Update max_read and max_write appropriately
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Simple Optimistic CC
• Locking may block resources for long

periods
• Simple Certification Approach:

– Immediately execute all operations of t1.
–At commit, check if any active transaction has

executed a conflicting operation, if so, abort
t1.

–Proof Idea: if t1 t2 then t1 certified before
t2.

• Most famous is optimistic concurrency
control protocol by Kung and Robinson.
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Kung and Robinson’s OCC
• Transactions execute in 3 phases:

– Read phase:  unrestricted reading of any object,
writes are local

– Validation phase: ensure that no conflicts occurred.
– Write phase: after successful validation, write values

in db.
• Validation of transaction t1:

– Check all concurrent transactions t2, i.e., the write
phase of t2 overlaps with read phase of t1:
• if readset (t1) overlaps with writeset (t2) then abort t1.

• Further optimizations have been explored.
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Pragmatic Considerations
• 2PL very popular but imposes significant

constraints:
– High synchronization overhead
– Not enough concurrency
– Read-only transactions blocked

• Multi-version Databases:
– Read-only transaction incur no synchronization
– Some flexibility in scheduling write operations

• In practice:
– Multi-version concurrency control
– Weaker forms of isolation

– Snapshot isolation weaker than serializable isolation
– Read committed
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Recovery

 When a transaction aborts, the system must wipe
out all its effects:
◦ on data:  use before images
◦ on transactions: cascading aborts.

 Consider:
w1[x,2] r2[x]  w2[y,3] c2 a1

 What do we do? Semantic dilemma!
 Solution: Only allow recoverable histories.
 A history is recoverable if whenever tj reads-x-

from ti, ci < cj.
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Goal of Crash Recovery

VLDB Summer School 2013

Failure-resilience:
• redo recovery for committed transactions
• undo recovery for uncommitted transaction

Failure model:
• soft (no damage to secondary storage)
• fail-stop captures most (server) software failures

Requirements:
• fast restart for high availability

•MTTF / (MTTF + MTTR)
• low overhead during normal operation
• simplicity, testability, very high confidence in
correctness

42July 28, 2013



Examples
 Server fails once a month, recovery takes 2

hours
 720/722 = 0.997
i.e., server availability is 99.7%
server is down 26 hours per year

 Server fails every 48 hours, but can recover
within 30 sec
 172800/172830 = 0.9998
i.e., server availability is 99.98%
server is down less than 2 hours per year

 Fast recovery is essential, not just long uptime!
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Actions During Normal Operation

VLDB Summer School 2013

All of the following actions are “tagged” with
unique, monotonically increasing sequence numbers

Transaction actions:
• begin (t)
• commit (t)
• abort (t)

Data actions:
• read (pageno, t)
• write (pageno, t)

Caching actions:
• fetch (pageno)
• flush (pageno)

Log actions:
• force ( )
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Overview of System Architecture

VLDB Summer School 2013

Database Cache

Log Buffer

Stable
Database

Stable
Log

Database
Page

Database
Page

Database
Page

Database
Page

Log EntryLog Entry

Log EntryLog Entry

read
write

begin
commit, rollback

write

fetch flush forceVolatile
Memory
Stable

Storage

Database Server
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Logging Rules

 During normal operation, a recovery
algorithm satisfies

• the redo logging rule

• if for every committed transaction T, all data actions of
T are in the stable log or the stable database

• the undo logging rule

• if for every data action p of an uncommitted
transaction T, the presence of p in the stable database
implies that p is in the stable log
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Centralized Recovery
We need to recover disk failures during

transaction execution so as to ensure the all
or nothing property.
 3 Approaches:

◦ Shadow paging:  2 copies of database.
◦ Before images:  store on disk log of before values

and update database immediately.  If failure
occurs and transaction has not committed
restore db based on log.

◦ After images: Perform updates in a log of after
images. If transaction commits, install values in db
from log.
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Distributed Transactions
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Database
Servers

Transaction
Managers

Clients

Users

. . .

...

...
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Concurrency Control Protocols

 Any of the centralized solutions can be
extended for the distributed setting:
◦ Distributed Two-phase Locking
◦ Distributed Timestamp Ordering
◦ Distributed Optimistic Protocols

 Every database server runs the same
instance of the protocol.
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Distributed Transaction Commit
 Fundamental Problem:

◦ Transaction operates on multiple servers (resource
managers)

◦ Global commit needs unanimous local commits of all
participants (agents)

 Distributed system may fail partially:
◦ Server Crashes
◦ Network failures

 Potential danger of inconsistent decision:
◦ A Transaction commits at some servers
◦ But is aborted at some other servers
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Atomic Commitment

 Distributed handshake protocol known as two-
phase commit (2PC):
◦ A coordinator (theTransaction Manager) takes the

responsibility of unanimous decision: COMMIT or
ABORT

◦ All database servers are the cohorts in this protocol
and become dependent on the coordinator
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Getting Married over the Network

VLDB Summer School 2013

Will you ... ? Will you .. ?

Yes! Yes!

Married!
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Atomic Commitment

 At commit time, the coordinator requests
votes from all participants.
 Atomic commitment requires:

◦ All processes reach same decision
◦ Commit only if all processes vote Yes.
◦ If there are no failures and all processes voteYes,

decision will be commit.
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Two Phase Commit (2PC)

 Coordinator
◦ send vote-request

◦ Collect votes. If all Yes, then
Commit, else Abort.

◦ Send decision

 Participant

◦ receive vote-request
◦ sendYes or No

◦ receive  decision
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Failures and Blocking

 What does a process do if it does not receive a
message it is expecting?  I.e., on timeout?

 3 cases:
◦ participant waiting for vote-request abort
◦ coordinator waiting for vote abort
◦ participant waiting for decision

uncertain

 Note: coordinator never uncertain
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Termination Protocol

 Can participant find help from other participants?

 Send to all participants: ``Help!  What is decision?’’
◦ if any participant has committed or aborted

send commit or abort decision.
◦ If a participant has not yet voted

abort and send abort decision.
◦ If all participants voted Yes

all live participants uncertain

 Transaction BLOCKED! 
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Distributed Commit

 Cause of significant complexity

 Failures of another site cause local data to
become unavailable

 Most commercial database provide 2PC but
in practice 2PC not used
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Transaction in Distributed DBMSs

 Significant overhead in managing correct
executions
 Reliance on a global synchronization mechanism
 Limits scalability
 Impacts fault-tolerance and data availability
 Logistics

◦ Sacrifices autonomy significant hurdle in large
enterprises

 Combination of all these factors made distributed
databases less practical
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CONCEPTS FROM
DISTRIBUTED SYSTEMS
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Distributed System Models

 Synchronous System: Known bounds on
times for message transmission,
processing, on local clock drifts, etc.
◦ Can use timeouts
 Asynchronous System: No known

bounds on times for message
transmission, processing, on local clock
drifts, etc.
◦ More realistic, practical, but no timeouts
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Outline

 Concept of logical timing in distributed
systems

 Quorums

 Leader Election

 Consensus and Paxos
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What is a Distributed System?

 A simple model of a distributed
system proposed by Lamport in a
landmark 1978 paper:
 “Time, Clocks and the Ordering of

Events in a Distributed System”
Communications of the ACM
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What is a Distributed System?

 A set of processes that communicate using
message passing
 A process is a sequence of events
 3 kinds of events:

◦ Local events
◦ Send events
◦ Receive events

 Local events on a process for a total order
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Happens Before Order on Events

 Event e happens before (causally precedes)
event f, denoted e→ f if:
1. The same process executes e before f ; or
2. e is send(m) and f is receive(m); or
3. Exists h so that e→ h and h→ f

We define concurrent, e || f, as:
¬(e→ f  f→ e)
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Lamport Logical Clocks

• Assign “clock” value to each event
– if ab then clock(a) < clock(b)

• Assign each process a clock “counter”.
–Clock must be incremented between any two

events in the same process
–Each message carries the sender’s clock value

• When a message arrives set local clock to:
– max(local value, message timestamp + 1)
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Example of a Logical Clock
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Vector clocks
1. Vector initialized to 0 at each process

Vi [j] = 0 for i, j =1, …, N
2. Process increments its element of the vector

in local vector before event:
Vi [i] = Vi [i] +1

3. Piggyback Vi with every message sent from
process Pi

4. When Pj receives message, compares vectors
element by element and sets local vector to
higher of two values

Vj [i] = max(Vi [i],Vj [i]) for i=1, …, N
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Example of a Vector Clock
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Quorums

• Many distributed actions need to contact
multiple servers

• What if there are failures?
• Do we need to communicate with ALL processes?

• A quorum is the minimum number of votes
needed for a distributed operation

• Any two requests should have a common
process to act as an arbitrator.

• Let process pi (pj)request permission from Vi (Vj),
then

–Vi ⋂ Vj ≠ ϕ.
• Vi is called a quorum.
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Quorums

 Given n processes: 2|Vi| >n, ie,

 In general, majority, ie ⌈(n/2)⌉.  [Gifford 79]
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General Quorums

• In a database context,  we have read and
write operations.  Hence, read quorums,
Qr, and write quorums, Qw.

• Simple generalization:
–Qr⋂ Qw ≠ϕ, Qw ⋂ Qw ≠ϕ
–Qr + Qw> n  and 2 Qw > n
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Leader Election

 Many distributed algorithms need one
process to act as coordinator
◦ Doesn’t matter which process does the job,

just need to pick one

 Election algorithms: technique to pick a
unique coordinator (aka leader election)
 Types of election algorithms: Bully and

Ring algorithms
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Bully Algorithm

• Each process has a unique numerical ID
• Processes know Ids and address of all other

process
• Communication is assumed reliable
• Key Idea: select process with highest ID
• Process initiates election if it just recovered

from failure or if coordinator failed
• 3 message types: election, OK, I won
• Processes can initiate elections simultaneously

– Need consistent result
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Bully Algorithm Details

 Any process P can initiate an election
 P sends Election messages to all process

with higher Ids and awaits OK messages
 If no OK messages, P becomes

coordinator & sends I won to all process
with lower Ids
 If it receives OK, it drops out & waits for

I won
 If a process receives Election msg, it

returns OK and starts an election
 If a process receives I won then sender

is coordinator
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Bully Algorithm Example

a) Process 4 holds an election
b) Process 5 and 6 respond, telling 4 to stop
c) Now 5 and 6 each hold an election
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Bully Algorithm Example

d) Process 6 tells 5 to stop
e) Process 6 wins and tells everyone
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Consensus
 Consensus requires agreement among a number of

processes for a single data value
 Processes may fail or be unreliable
 Properties of consensus

◦ Termination
 Every correct process decides some value

◦ Validity
 If all correct processes propose the same value v, then all correct

processes decide v
◦ Integrity
 Every correct process decides at most one value, and if it decides

some value v, then v must have been proposed by some process
◦ Agreement
 Every correct process must agree on the same value
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Paxos

 Lamport the archeologist and the “Part-time
Parliament” of Paxos:
◦ The Part-time Parliament,  TOCS 1998
◦ Paxos Made Simple, ACM SIGACT News 2001.
◦ Paxos Made Live, PODC 2007
◦ Paxos Made Moderately Complex, (Cornell)

2011.

◦……..
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The Paxos Algorithm

 Leader based: each process has an estimate
of who is the current leader
 To order an operation, a process sends it to

current leader
 The leader sequences the operation and

launches a Consensus algorithm to fix the
agreement
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The Consensus Algorithm Structure

 Two phases
 Leader contacts a majority in each phase
 There may be multiple concurrent leaders
 Ballots distinguish among values proposed by

different leaders
◦ Unique,  locally monotonically increasing
◦ Processes respond only to leader with highest ballot seen

so far
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The Two Phases of Paxos

 Phase 1: prepare
◦ If you believe you are the leader
 Choose new unique ballot number
 Learn outcome of all smaller ballots from majority

 Phase 2: accept
◦ Leader proposes a value with its ballot number
◦ Leader gets majority to accept its proposal

◦ A value accepted by a majority can be decided

VLDB Summer School 2013 81July 28, 2013



In Failure-Free Execution
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Why is this phase needed?

Performance?
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Failure-Free Execution
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Observation

 In Phase 1, no consensus values are sent:
◦ Leader chooses largest unique ballot number
◦ Gets a majority to “vote” for this ballot number
◦ Learns the outcome of all smaller ballots

 In Phase 2, leader proposes its own initial
value or latest value it learned in Phase 1
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Failure free execution
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Optimization

 Run Phase 1 only when the leader changes
◦ Phase 1 is called “view change” or “recovery

mode”
◦ Phase 2 is the “normal mode”

 Each message includes BallotNum (from the
last Phase 1) and ReqNum
 Respond only to messages with the “right”

BallotNum
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Summary

 Concept of logical timing in distributed
systems

◦ Lamport Clocks

◦ Vector Clocks

 Quorums

 Leader Election

 Consensus and Paxos
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P2P SYSTEMS
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Searching for distributed data

 Goal: Make billions of objects available to
millions of concurrent users
◦ e.g., music files
 Need a distributed data structure to keep

track of objects on different sires.
◦ map object to locations
 Basic Operations:

◦ Insert(key)
◦ Lookup(key)
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Searching

Internet

N1
N2 N3

N6N5
N4

Publisher

Key=“title”
Value=MP3 data… Client

Lookup(“title”)

?
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Simple Solution

 First There was Napster
◦ Centralized server/database for lookup
◦ Only file-sharing is peer-to-peer, lookup is not

 Launched in 1999, peaked at 1.5 million
simultaneous users, and shut down in July
2001.
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Napster: Publish

I have X, Y, and Z!

Publish

insert(X,
123.2.21.23)

...

123.2.21.23
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Napster: Search

Where is file A?

Query Reply

search(A)
-->
123.2.0.18Fetch

123.2.0.18
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Distributed Hash Tables (DHTs)
 Nodes store table entries

◦ lookup( key ) returns the location of the node
currently responsible for this key

We will discuss Chord
◦ [Stoica, Morris, Karger, Kaashoek, and

Balakrishnan  SIGCOMM 2001]
Other examples:

◦ CAN (Berkeley),
◦ Tapestry (Berkeley),
◦ Pastry (Microsoft Cambridge)
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Chord Logical Structure (MIT)

• m-bit ID space (2m IDs), usually m=160.
• Nodes organized in a logical ring according

to their IDs.

N1
N8

N10

N14

N21

N30
N38

N42

N48

N51
N56
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Consistent Hashing Guarantees

• For any set of N nodes and K keys:
–A node is responsible for at most (1 + )K/N

keys
–When an (N + 1)st node joins or leaves,

responsibility for O(K/N) keys changes hands
• For the scheme described above,  =

O(logN)
•  can be reduced to an arbitrarily small

constant by having each node run (logN)
virtual nodes, each with its own identifier.
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Finger Table

N80

1/21/4

1/8

1/16
1/32
1/64
1/128

• Entry i in the finger table of node n is the first node that succeeds or
equals n + 2i

• In other words, the ith finger points 1/2n-i way around the ring
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DHT: Chord Routing
Upon receiving a query
for item id, a node:

◦ Checks whether stores
the item locally?

◦ If not, forwards the query
to the largest node in its
successor table that does
not exceed id 0

1

2

3
4

5

6

7 i  id+2i succ
0    2      2
1    3      6
2    5      6

Succ. Table

i  id+2i succ
0    3      6
1    4      6
2    6      6

Succ. Table

i  id+2i succ
0    1      1
1    2      2
2    4      0

Succ. Table

7

Items
1

Items

i  id+2i succ
0    7      0
1    0      0
2    2      2

Succ. Table

query(7)
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P2P Lessons

 Decentralized architecture
 Avoid centralization
 Flooding can work.
 Logical overlay structures provide strong

performance guarantees.
 Churn a problem.
 Useful in many distributed contexts
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KEY VALUE STORES
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Overview

 Design Choices and their Implications

 Common Key-value Store examples

◦ Bigtable

◦ PNUTs

◦ Dynamo

 Discussion
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Key Value Stores

 Gained widespread popularity
◦ In house: Bigtable (Google), PNUTS (Yahoo!),

Dynamo (Amazon)
◦ Open source: HBase, Hypertable, Cassandra,

Voldemort
 Challenges

◦ Request routing
◦ Cluster management
◦ Fault-tolerance and data replication
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Key Value Data Models
 Data model

◦ Key is the unique identifier
◦ Key-value is the granularity for consistent access
◦ Value can be structured or unstructured

 Bigtable
◦ Sparse multidimensional sorted map
 Tables comprise of column families
 Values indexed by the key, column family, column, and timestamp

 PNUTS
◦ Flat column structure

 Dynamo
◦ Un-interpreted string of bytes (blob)
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BigTableVisual Illustration

WebTable Example: URLs are row keys, various aspects of
web pages as column names, eg, “contents” stores contents
of webpages versions indexed by timestamp.

VLDB Summer School 2013 105July 28, 2013



Different Design Goals

 Bigtable (Google):
◦ Scale-out for single-key access and range scans
◦ Support for crawl and indexing infrastructure

 PNUTS (Yahoo!):
◦ Geographic replication for high read availability
◦ Support for geographically distributed clients

 Dynamo (Amazon):
◦ High write availability
◦ Support for shopping carts (e-commerce)
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Request Routing

 To determine which storage unit has a
record:
◦ Hierarchical approach
 Bigtable (Range partitioned)
 B+-tree stores mapping of key ranges to servers

◦ Explicit storing of mapping
 PNUTS (Range or hash partitioned)
 Tablet controller stores interval mapping of partitions to servers
 Routing layer responsible for request routing

◦ Distributed Hash Table approach
 Dynamo (Hash partitioned)
 Consistent hashing a la Chord.
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Cluster Management

Monitoring nodes, failures, recovery
and load balancing
 Centralized, master based

◦ Bigtable
 Master contacts Chubby for node recovery.

◦ PNUTS
 Tablet controller

 Decentralized, gossip based
◦ Dynamo
 Sloppy quorums
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Fault-tolerance and Data Replication
 Modular Shared Storage Design

◦ Bigtable
 Fault-tolerant storage: Google File System (GFS)
 Strong replica consistency

 Explicit Replication
◦ PNUTS
 Reliable pub/sub system:Yahoo! Message Broker (YMB)
 Single object timeline consistency for replicas
 Per-record master for fine-grain control of locality of writes

◦ Dynamo
 Asynchronous replication using quorums
 Eventual consistency
 Divergent versions reconciled by application using vector clocks
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Design Principles

What have we learned from
Key-value stores?



Design Principles

 Separate System and Application State
◦ System metadata is critical but small
◦ Application data has varying needs
◦ Separation allows use of different class of protocols
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Design Principles
 Decouple Ownership from Data Storage

◦ Ownership is exclusive read/write access to data
◦ Decoupling allows lightweight ownership migration
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Cache ManagerCache Manager

Transaction
Manager

Transaction
Manager

RecoveryRecovery

Ownership
[Multi-step transactions or

Read/Write Access]

Ownership
[Multi-step transactions or

Read/Write Access]

Storage

Classical DBMSs Decoupled ownership and
Storage
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Design Principles
 Limit most interactions to a single node

◦ Allows horizontal scaling
◦ Graceful degradation during failures
◦ No distributed synchronization
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Design Principles

 Limited distributed synchronization is
practical
◦ Maintenance of metadata
◦ Provide strong guarantees only for data that needs it
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Bigtable

 Shared-nothing architecture consisting of
thousands of nodes (commodity PC).

Google File System

Bigtable Servers

…….
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Bigtable

 Data model (a schema).
◦ A sparse, distributed persistent multi-dimensional

sorted map

 Data is partitioned across the nodes seamlessly.
 The map is indexed by a row key, column key,

and a timestamp.
 Output value in the map is an un-interpreted

array of bytes.
◦ (row: byte[ ], column: byte[ ], time: int64) byte[ ]
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Column Families

 Column keys are grouped into sets called
column families (nested tables).
 A column family must be created before

data can be stored in a column key.
 A unit of storage co-location.
 Hundreds of static column families.
 Syntax is family:qualifier:

◦ Language:English
◦ Language:German
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Bigtable API

 Implements interfaces to:
◦ create and delete tables and column families,
◦ modify cluster, table, and column family metadata

such as access control rights,
◦ Write or delete values in Bigtable,
◦ Lookup values from individual rows,
◦ Iterate over a subset of the data in a table,
◦ Atomic R-M-W sequences on data in a single

row key (No support for TXN across multiple
rows).
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Example

// open the table
Table *T =OpenOrDie(“/bigtable/web/webtable”);

//write a new anchor and delete an old anchor
RowMutation R1(T, “www.cnn.com”);
R1.set(“anchor:www.c-span.org”, “cnn”);
R1.delete(“anchor:www.abc.com”);
Operation &op;
APPLY(&op, &R1);
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Bigtable’s Building Blocks

 Google File System (GFS)
◦ Highly available distributed file system that stores

log and data files

 SSTable
◦ Stores Bigtable data by providing a persistent

immutable mapping from  keys to values .

 Chubby
◦ Highly available persistent distributed lock

manager.

VLDB Summer School 2013 120July 28, 2013



Routing: 3 Level Hierarchy
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Metadata is also small:
• Each meta-data row stores ~
1KB of data,
• With 128 MB meta-data
tablets, we can address 234

tablets.
• Approaches a Zetabyte (106

Petabytes).
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Chubby

 A persistent and distributed lock service.
 Consists of 5 active replicas:

◦ One replica is elected master and serves
requests

◦ Live: as long as majority available
◦ Paxos is used to keep copies consistent

 Maintains strictly consistent namespaces
◦ Small files, which are used as locks
◦ Reads and writes are atomic.
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SSTable
 A file format used to store Bigtable data:

◦ Stores and retrieves key/data pairs.
◦ Supports iterating over key/value pairs given a

selection predicate (exact and range).
◦ Each SSTable contains a sequence of blocks + a

block index (loaded in memory on opening)
◦ Lookup: use in-memory index to locate block

 An SSTable is stored in GFS.
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Tablets in Bigtable
 Bigtable maintains data in lexicographic

order by row key, range partitioned into
tablets
 A tablet is represented a set of SSTable files.
 Tablet is unit of distribution and load-

balancing.
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Index

64K
block

64K
block

64K
block

SSTable

Index

64K
block

64K
block

64K
block

SSTable

Tablet Start:aardvark End:apple
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Tables

 A table is dynamically partitioned into tablets
 SSTables can be shared
 Tablets do not overlap, SSTables can overlap
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SSTable SSTable SSTable SSTable

Tablet

aardvark apple

Tablet

apple_two_E boat
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Bigtable’s 3 Major Components
1. A Bigtable library linked into every client.
2. One Master Server responsible for:

◦ Assigning tablets to tablet servers,
◦ Detecting the addition and deletion of tablet servers,
◦ Balancing tablet-server load,

3. Many tablet servers:
◦ Each manages ten to a thousand tablets.
◦ Handles read and writes to its tablet and splits tablets.
◦ Tablet servers are added and removed dynamically.

 Client communicates directly with tablet servers for
reads/writes (not thru master).

 Bigtable cluster stores a number of tables, each table
consists of a set of tablets and a tablet contains a row
range
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Bigtable and Chubby
 Bigtable uses Chubby to keep track of tablet servers:

◦ Ensure there is at most one active master at a time,
◦ Store the bootstrap location of Bigtable data (Root

tablet),
◦ Discover tablet servers and finalize tablet server deaths,
◦ Store Bigtable schema information (column family info.),
◦ Store access control list.

 If Chubby becomes unavailable for an extended
period of time, Bigtable becomes unavailable.
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Tablet Operations

 Tablet recovery:
◦ Server reads metadata from METADATA table
◦ Server reads indices of SSTables into memory and reconstructs

memtable

 Write operation:
◦ A log record is generated to the commit log file of redo

records
◦ Once the write commits, its contents are inserted into the

memtable.

 Read operation:
◦ Server ensures client has privileges for the read operation

(Chubby),
◦ Read is performed on a merged view of (a) the SSTables that

constitute the tablet, and (b) the memtable.
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Highlights of Bigtable

 Separate storage layer from data
management.
 Restrict activity to one server.
 Key-value store with column families.
 Fault-tolerance achieved through:

◦ Chubby
◦ GFS

 Master-based approach for server/tablet
management
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PNUTS Overview

 Massively parallel and geographically
distributed database system.
 Data organized as hashed or ordered

tables.
 Low latency for concurrent updates and

queries
 Novel per-read consistency
 Centrally managed, geographically distributed,

automated load-balancing and failover
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PNUTS Overview

 Data Model:
◦ Simple relational model—really key-value store.
◦ Single-table scans with predicates

 Fault-tolerance:
◦ Redundancy at multiple levels: data, meta-data etc.
◦ Leverages relaxed consistency for high availability:

reads & writes despite failures

 Pub/Sub Message System:
◦ Yahoo! Message Broker for asynchronous updates
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PNUTS Overview

 Record-level Mastering:
◦ Asynchronous operations to enable record-level

mastering

 Hosting:
◦ Centrally managed database service
◦ Shared among many applications
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PNUTS Architecture

E     75656               C

A     42342               E
B     42521               W
C     66354               W
D 12352 E

F 15677 E

E     75656               C

A     42342               E
B     42521               W
C     66354               W
D     12352               E

F     15677               E

CREATE TABLE Parts (
ID VARCHAR,
StockNumber INT,
Status VARCHAR
…

)

CREATE TABLE Parts (
ID VARCHAR,
StockNumber INT,
Status VARCHAR
…

)

Parallel databaseParallel database Geographic replicationGeographic replication

Indexes and viewsIndexes and views

Structured, flexible schemaStructured, flexible schema

Hosted, managed infrastructureHosted, managed infrastructure

A     42342               E
B     42521               W
C 66354 W
D 12352 E
E     75656               C
F     15677               E
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Data Model

 Table of records with attributes
 “BLOB” is a valid data-type (exclude

image/audio etc.)
 Flexible schema:

◦ Attributes can be added dynamically
◦ (No mention of dropping attributes  )
◦ Records not required to have values for all

attributes (i.e., integrity constraints minimal)
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Query model
 Per-record operations

◦ Get
◦ Set
◦ Delete

 Multi-record operations
◦ Multi-get
◦ Scan
◦ Get-range
 Caveats:

◦ No referential integrity
◦ No complex operations: joins, group-by, etc.
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Asynchronous replication
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Consistency Model

 Hide the complexity of data replication
 Between the two extremes:

◦ One-copy serializability, and
◦ Eventual consistency

 Key assumption:
◦ Applications manipulate one record at a time

 Per-record time-line consistency:
◦ All replicas of a record preserve the update

order
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Implementation

 A read returns a consistent version
 One replica designated as master (per

record)
 All updates forwarded to that master
 Master designation adaptive, replica with

most of writes becomes master
 A sequence number
 Only one version of record/replica
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API Calls
 Read-Any:

◦ Returns (possibly) a stale version of the record
 Read-Critical (required-version):

◦ Version ≥ required-version
 Read-latest:

◦ Executed at the master
 Write:

◦ ACID guarantees with a single write operation
 TestAndSet (required-version):

◦ Performs write if and only if the presented version =
required-version

 Synchronizes concurrent writers, optimistically
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Consistency model
 Goal: make it easier for applications to reason about updates and

cope with asynchrony

 What happens to a record with primary key “Brian”?

Time

Record
inserted

Update Update Update UpdateUpdate Delete

Time
v. 1 v. 2 v. 3 v. 4 v. 5 v. 7

Generation 1
v. 6 v. 8

Update Update
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Data-path componentsData-path components

Storage units

Routers
Tablet

controller

REST API

Clients

Message
Broker

Detailed architecture
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Storage unit 1 Storage unit 2 Storage unit 3

Request Routing

Router

Apple
Avocado
Banana
Blueberry

Canteloupe
Grape
Kiwi
Lemon

Lime
Mango
Orange

Strawberry
Tomato
Watermelon

MIN-Canteloupe SU1
Canteloupe-Lime SU3
Lime-Strawberry SU2
Strawberry-MAX SU1SU1Strawberry-MAX

SU2Lime-Strawberry

SU3Canteloupe-Lime

SU1MIN-Canteloupe
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Updates

Write key k

Write key kSequence # for key k

Sequence # for key k

SU SU SU

Write key k

SUCCES
S

Write key k

Routers
Message brokers
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Highlights of PNUTS Approach

 Shared nothing architecture
 Multiple datacenter for geographic

distribution
 Time-line consistency and access to stale

data.
 Use a publish-subscribe system for reliable

fault-tolerant communication
 Replication with record-based master.
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Dynamo Design Rationale

 Most services need key-based access:
◦ Best-seller lists, shopping carts, customer

preferences, session management, sales rank,
product catalog, and so on.

 Prevalent application design based on
RDBMS technology will be catastrophic.
 Dynamo therefore provides primary-

key only interface.
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Dynamo Design Overview

 Data partitioning using consistent hashing
 Data replication
 Consistency via version vectors
 Replica synchronization via quorum protocol
 Gossip-based failure-detection and

membership protocol
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Striving for Application Performance

 Application can deliver
its functionality in a
bounded time
 Example SLA: service

guaranteeing that it will provide a
response within 300ms for 99.9%
of its requests for a peak client
load of 500 requests per second.

Service-oriented architecture of
Amazon’s platform
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Design Notes
 Optimistic/Asynchronous Replication:

◦ Leads to update conflicts
◦ Hence, need conflict resolution: eventual consistency

 When to resolve conflicts?
◦ Traditionally at the time of Write risk of aborts
◦ Reads simple

 Dynamo approach:
◦ Always writeable
◦ Conflict resolution complexity at Reads

 Who resolves the conflict:
◦ Data store: limited choices; syntactic: last write wins.
◦ Application: semantic: case-by case
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Design Notes

 Incremental scalability:
◦ Scale out: One storage node at a time

 Symmetry:
◦ Peer-based design
◦ Principle of equal responsibility

 Decentralization: decentralized Peer to Peer.
 Heterogeneity: in infrastructure.
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Summary of techniques

Problem Technique Advantage

Partitioning Consistent Hashing Incremental Scalability

High Availability for writes
Vector clocks with

reconciliation during reads
Version size is decoupled

from update rates.

Handling temporary failures
Sloppy Quorum and hinted

handoff

Provides high availability and
durability guarantee when

some of the replicas are not
available.

Recovering from permanent
failures

Anti-entropy using Merkle
trees

Synchronizes divergent
replicas in the background.

Membership and failure
detection

Gossip-based membership
protocol and failure

detection.

Preserves symmetry and
avoids having a centralized

registry for storing
membership and node
liveness information.
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System Interface

 Two basic operations:
◦ Get(key):
 Locates replicas
 Returns the object + context (encodes meta data

including version)

◦ Put(key, context, object):
 Writes the replicas to the disk
 Context: version (vector timestamp)

 Hash(key) 128-bit identifier
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Data Partitioning and Routing

 Consistent hashing: the
output range of a hash function
is treated as a fixed circular
space or “ring” a la Chord.

 “Virtual Nodes”: Each node
can be responsible for more
than one virtual node (to deal
with non-uniform data and load
distribution)
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Virtual Nodes

VLDB Summer School 2013 153July 28, 2013



Replication

 Each data item is
replicated at N hosts.
 preference list:The list

of nodes that is
responsible for storing
a particular key.
 Some fine-tuning to

account for virtual
nodes
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Replication
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Replication
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Data Versioning

 A put() call may return to its caller before
the update has been applied at all the
replicas
 A get() call may return many versions of the

same object.
 Challenge: an object may have distinct versions

 Solution: use vector clocks in order to capture
causality between different versions of same
object.

VLDB Summer School 2013 157July 28, 2013



Vector Clock

 A vector clock is a list of (node, counter) pairs.
 Every version of every object is associated with

one vector clock.
 If the all counters on the first object’s clock are

less-than-or-equal to all of the counters in the
second clock, then the first is an ancestor of
the second and can be forgotten.
 Application reconciles divergent versions and

collapses into a single new version.
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Routing requests

 Route request through a generic load
balancer that will select a node based on
load information.

 Use a partition-aware client library that
routes requests directly to relevant node.

 A gossip protocol propagates membership
changes.  Each node contacts a peer
chosen at random every second and the
two nodes reconcile their membership
change histories.
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Sloppy Quorum

 R and W is the minimum number of nodes
that must participate in a successful
read/write operation.
 Setting R + W > N yields a quorum-like

system.
 In this model, the latency of a get (or put)

operation is dictated by the slowest of the R
(or W) replicas. For this reason, R and W are
usually configured to be less than N, to
provide better latency and availability.
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Discussion

 Three different approaches to designing
scalable data stores
 Many open-source variants inspired by these

designs
◦ HBase, Cassandra, Voldemort, Riak, …

 Main memory object stores are another
form of key-value store
◦ Memcached, Redis, …
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