
Data Serving Systems in
Cloud Computing Platforms

Sudipto Das
eXtreme Computing Group (XCG),

Microsoft Research (MSR)

Day 1 Morning Session

Acknowledgements

 Prof. Divy Agrawal and Prof. Amr El Abbadi
◦ Much of the material presented is joint work with

them on tutorials, a book, and my PhD work
 Phil Bernstein

◦ For the material on “Rethinking eventual
consistency”

 Prof. Aoying Zhou for inviting me
 Summer school organizers

◦ Xiaoling Wang, Han Lu
◦ For all the help in making this last-minute draft

possible

July 28, 2013 VLDB Summer School 2013 2

Outline of the Lecture (Day 1)

 Morning Session

◦ Foundations of
Database, P2P, and
Distributed Systems

◦ Key Value Stores –
Design Principles

◦ Key Value Stores – A
survey of systems

 Afternoon Session

◦ CAP and Rethinking
Eventual Consistency

◦ Scale-out Transaction
Processing – Design
Principles

July 28, 2013 VLDB Summer School 2013 3

Outline of the Lecture (Day 2)

 Morning Session

◦ Transactions on co-
located data – A
survey of systems

◦ Transactions on
distributed data – A
survey of systems

 Afternoon Session

◦ Multi-tenant database
systems – Design
Principles

◦ Database Elasticity

◦ Performance
Management in Multi-
tenant Database
Systems

July 28, 2013 VLDB Summer School 2013 4

Material Covered

 Structure loosely follows
our book
 Many slides adapted

from presentations from
authors or relevant
papers

July 28, 2013 VLDB Summer School 2013 5

Web replacing Desktop

VLDB Summer School 2013 6July 28, 2013

7

Paradigm shift in Infrastructure

VLDB Summer School 2013July 28, 2013

Cloud Computing
 Computing infrastructure

and solutions delivered as a
service
◦ Industry worth USD150 billion by

2014*

 Contributors to success
◦ Economies of scale
◦ Elasticity and pay-per-use pricing

 Popular paradigms
◦ Infrastructure as a Service (IaaS)
◦ Platform as a Service (PaaS)
◦ Software as a Service (SaaS)

8VLDB Summer School 2013

*http://www.crn.com/news/channel-programs/225700984/cloud-computing-services-market-to-near-150-billion-in-2014.htm

July 28, 2013

Cloud Computing: History

VLDB Summer School 2013July 28, 2013 9

Cloud Computing: Why Now?
• Experience with very large datacenters

– Unprecedented economies of scale
– Transfer of risk

• Technology factors
– Pervasive broadband Internet and smartphones
– Maturity in virtualization technology

• Business factors
– Minimal capital expenditure
– Pay-as-you-go billing model

VLDB Summer School 2013 10July 28, 2013

Databases for Cloud Platforms
 Data is central to applications
 DBMSs are mission critical component in

cloud software stack
◦ Manage petabytes of data, drive revenue
◦ Serve a variety of applications (multitenancy)
 Data needs for cloud applications

◦ OLTP systems: store and serve data
◦ Data analysis systems: decision support,

intelligence

11VLDB Summer School 2013July 28, 2013

Application Landscape

 Social gaming

 Rich content and
mash-ups

Managed
applications

 Cloud application
platforms

VLDB Summer School 2013 12July 28, 2013

Data Serving in the Cloud
What do I mean by “data serving”?

July 28, 2013 VLDB Summer School 2013 13

Challenges

 Fault-tolerance
◦ Replication

 Large scale data
◦ Partition data across multiple servers

 Managing the system state
 Must understand

◦ Database foundations
◦ Distributed systems foundations

VLDB Summer School 2013 14July 28, 2013

FOUNDATIONS OF
DATABASE, P2P, AND
DISTRIBUTED SYSTEMS

July 28, 2013 VLDB Summer School 2013 15

Outline

 Transaction Processing Systems
◦ Concurrency control
◦ Recovery

 Distributed Systems
◦ Logical times and Clocks
◦ Leader election
◦ The consensus problem

 P2P Systems
◦ Consistent hashing & DHTs

July 28, 2013 VLDB Summer School 2013 16

CONCEPTS OF
TRANSACTION
PROCESSING IN RDBMS

July 28, 2013 VLDB Summer School 2013 17

Data Management Evolution

• RDBMS (Relational Data Base Management
Systems) became highly successful:
– Widely adopted by both large and small business

entities
• Enterprises became increasingly reliant on

databases
• Primarily used for day-to-day operations:

– Banking operations
– Retail operations
– Travel industry

VLDB Summer School 2013 18July 28, 2013

Data Management Evolution
• Typically:

– Database modeled the state of the application
– Client operations were applied to update the state.

Database state
Modified

Database state

VLDB Summer School 2013 19

Client
Operations

(Transactions)

July 28, 2013

The OLTP Paradigm

• On-line Transaction Processing:
–Database state is up-to-date at all times

• Significant challenges:
–Multiple users/clients need to be supported
–Handle hardware and software failures

• Emergence of what is now commonly referred
to as:

–The Transaction Concept
VLDB Summer School 2013 20July 28, 2013

The Transaction Concept

• Multiple online users
–Gives rise to the concurrency problem

• Component unreliability:
–Gives rise to the failure problem

• Problems in the context of managing
persistent data
–Online transaction processing system (OLTP)

VLDB Summer School 2013 21July 28, 2013

OLTP Example: Debit/Credit

VLDB Summer School 2013

void main () {
EXEC SQL BEGIN DECLARE SECTION

int BAL, AID, amount;
EXEC SQL END DECLARE SECTION;

scanf (“%d %d”, &AID, &amount); /* USER INPUT */

EXEC SQL Select Balance into :BAL From Account
Where Account_Id = :AID; /* READ FROM DB */

BAL = BAL + amount; /* update BALANCE in memory*/

EXEC SQL Update Account
Set Balance = :b Where Account_Id = :AID; /* WRITE INTO DB*/

EXEC SQL Commit Work;
}

22July 28, 2013

OLTP Example:A Social App

VLDB Summer School 2013

public void confirm_friend_request(user1, user2)
{
begin_transaction();

update_friend_list(user1, user2, status.confirmed);
update_friend_list(user2, user1, status.confirmed);

end_transaction();
}

23July 28, 2013

The Transaction Concept
• Developed as a paradigm to deal with:

– Concurrent access to shared data
– Failures of different kinds/types

• The key problem solved in an elegant manner:
– Subtle and difficult issue of keeping data consistent in

the presence of concurrency and failures

while ensuring performance, reliability, and
availability

VLDB Summer School 2013 24July 28, 2013

Preliminaries: Transactions
 A transaction is a set of operations executed in

some partial order

 A transaction is assumed to be correct, i.e., if
executed alone on a consistent database, it
transforms it into another consistent state

 Example: r1[x] r1[y] w1[x] w1[y] is an example of a
transaction t1 that transfers some amount of money
from account x to account y

25VLDB Summer School 2013July 28, 2013

Correctness Requirements: ACID

• ATOMICITY:
–All-or-none property of user programs

• CONSISTENCY
–User program is a consistent unit of execution

• ISOLATION
–User programs are isolated from the side-effects

of other user programs

• DURABILITY:
–Effects of user programs are persistent forever

VLDB Summer School 2013 26July 28, 2013

Concurrency Control and
Correctness

 Goal:
◦ A technique/algorithm/scheduler that prevents

incorrect or bad execution.

 Develop the notion of correctness – or
characterize what does correct execution
means

VLDB Summer School 2013 27July 28, 2013

Serial History

 A history H is serial if for any two
transactions Ti and Tj in H, all operations
of Ti are ordered in H before all
operations of Tj or vice-versa

 Example:
◦ r1(x) r1(z) w1(x) c1 r2(x) w2(y) c2 r3(z) w3(y)

w3(z) c3

VLDB Summer School 2013 28July 28, 2013

General Idea for Correctness

 Equivalence of two histories H1 and H2.

 Use this notion of equivalence to accept all
histories which are “equivalent” to some
serial history as being correct.

 How to establish this equivalence notion?

VLDB Summer School 2013 29July 28, 2013

Serializability

A history is serializable if it is
equivalent to a serial history over the

same set of transactions.

30VLDB Summer School 2013July 28, 2013

Conflicts and Serializability

 Operations on different objects do not
conflict.
 Reads on the same object do not conflict:

◦ R1[x] R2[x] = R2[x] R1[x]

 Operations on the same object, and at least
one of them is write conflict:
◦ R1[x] and W2[x], or
◦ W1[x] and W2[x]

VLDB Summer School 2013 31July 28, 2013

Concurrency Control Variants

 Locking

 Timestamp Ordering

 Optimistic Concurrency Control

VLDB Summer School 2013 32July 28, 2013

Locking Protocol
• For each step the scheduler requests a

lock on behalf of the step‘s transaction.
• Each lock is requested in a specific mode

– read or write

• If the data item is not locked in an
incompatible mode the lock is granted;

• Otherwise there is a lock conflict and the
transaction becomes blocked (suffers a
lock wait) until the current lock holder
releases the lock.

VLDB Summer School 2013 33July 28, 2013

Two Phase Locking Protocol
 The 2PL protocol:

1. On pi[x], if pli[x] conflicts delay it otherwise
set pli[x].

2. Once the scheduler has set pli[x] it may not
release it until the Data Manager has
acknowledged processing of pi[x].

3. Once the scheduler has released a
lock for a transaction, it may not
subsequently obtain any more locks
for that transaction (on any data
item).

VLDB Summer School 2013 34July 28, 2013

Two Phase Locking Protocol

July 28, 2013 VLDB Summer School 2013 35

Time

N
o.

 o
f L

oc
ks

Lock point

Growing phase Shrinking phase

Locking Performance
• In a multiprogramming system, resource

contention arises over memory, processors, I/O
channels, etc.

• In a locking system, data contention arises due
to queues , which form due to conflicting
operations.

• Locking can cause thrashing

36VLDB Summer School 2013July 28, 2013

T
hr

ou
gh

pu
t

Multi-programming Level

Timestamp Ordering
• Associate with each transaction a timestamp.
• The CC protocol orders conflicting operations

according to timestamp order.
– If pi[x] and qj[x] are conflicting operations, then pi is

executed before qj if time(ti) < time(tj).
• Every object maintains: max_read and max_write.
• Read: if time(ti) < max_write

– reject read
• Write: if time(ti) < max_read or time(ti) <

max_write
– reject write.

• Update max_read and max_write appropriately

37VLDB Summer School 2013July 28, 2013

Simple Optimistic CC
• Locking may block resources for long

periods
• Simple Certification Approach:

– Immediately execute all operations of t1.
–At commit, check if any active transaction has

executed a conflicting operation, if so, abort
t1.

–Proof Idea: if t1 t2 then t1 certified before
t2.

• Most famous is optimistic concurrency
control protocol by Kung and Robinson.

38VLDB Summer School 2013July 28, 2013

Kung and Robinson’s OCC
• Transactions execute in 3 phases:

– Read phase: unrestricted reading of any object,
writes are local

– Validation phase: ensure that no conflicts occurred.
– Write phase: after successful validation, write values

in db.
• Validation of transaction t1:

– Check all concurrent transactions t2, i.e., the write
phase of t2 overlaps with read phase of t1:
• if readset (t1) overlaps with writeset (t2) then abort t1.

• Further optimizations have been explored.

39VLDB Summer School 2013July 28, 2013

Pragmatic Considerations
• 2PL very popular but imposes significant

constraints:
– High synchronization overhead
– Not enough concurrency
– Read-only transactions blocked

• Multi-version Databases:
– Read-only transaction incur no synchronization
– Some flexibility in scheduling write operations

• In practice:
– Multi-version concurrency control
– Weaker forms of isolation

– Snapshot isolation weaker than serializable isolation
– Read committed

VLDB Summer School 2013 40July 28, 2013

Recovery

 When a transaction aborts, the system must wipe
out all its effects:
◦ on data: use before images
◦ on transactions: cascading aborts.

 Consider:
w1[x,2] r2[x] w2[y,3] c2 a1

 What do we do? Semantic dilemma!
 Solution: Only allow recoverable histories.
 A history is recoverable if whenever tj reads-x-

from ti, ci < cj.

41VLDB Summer School 2013July 28, 2013

Goal of Crash Recovery

VLDB Summer School 2013

Failure-resilience:
• redo recovery for committed transactions
• undo recovery for uncommitted transaction

Failure model:
• soft (no damage to secondary storage)
• fail-stop captures most (server) software failures

Requirements:
• fast restart for high availability

•MTTF / (MTTF + MTTR)
• low overhead during normal operation
• simplicity, testability, very high confidence in
correctness

42July 28, 2013

Examples
 Server fails once a month, recovery takes 2

hours
 720/722 = 0.997
i.e., server availability is 99.7%
server is down 26 hours per year

 Server fails every 48 hours, but can recover
within 30 sec
 172800/172830 = 0.9998
i.e., server availability is 99.98%
server is down less than 2 hours per year

 Fast recovery is essential, not just long uptime!

VLDB Summer School 2013 43July 28, 2013

Actions During Normal Operation

VLDB Summer School 2013

All of the following actions are “tagged” with
unique, monotonically increasing sequence numbers

Transaction actions:
• begin (t)
• commit (t)
• abort (t)

Data actions:
• read (pageno, t)
• write (pageno, t)

Caching actions:
• fetch (pageno)
• flush (pageno)

Log actions:
• force ()

44July 28, 2013

Overview of System Architecture

VLDB Summer School 2013

Database Cache

Log Buffer

Stable
Database

Stable
Log

Database
Page

Database
Page

Database
Page

Database
Page

Log EntryLog Entry

Log EntryLog Entry

read
write

begin
commit, rollback

write

fetch flush forceVolatile
Memory
Stable

Storage

Database Server

45July 28, 2013

Logging Rules

 During normal operation, a recovery
algorithm satisfies

• the redo logging rule

• if for every committed transaction T, all data actions of
T are in the stable log or the stable database

• the undo logging rule

• if for every data action p of an uncommitted
transaction T, the presence of p in the stable database
implies that p is in the stable log

July 28, 2013 VLDB Summer School 2013 46

Centralized Recovery
We need to recover disk failures during

transaction execution so as to ensure the all
or nothing property.
 3 Approaches:

◦ Shadow paging: 2 copies of database.
◦ Before images: store on disk log of before values

and update database immediately. If failure
occurs and transaction has not committed
restore db based on log.

◦ After images: Perform updates in a log of after
images. If transaction commits, install values in db
from log.

47VLDB Summer School 2013July 28, 2013

Distributed Transactions

VLDB Summer School 2013

Database
Servers

Transaction
Managers

Clients

Users

. . .

...

...

48July 28, 2013

Concurrency Control Protocols

 Any of the centralized solutions can be
extended for the distributed setting:
◦ Distributed Two-phase Locking
◦ Distributed Timestamp Ordering
◦ Distributed Optimistic Protocols

 Every database server runs the same
instance of the protocol.

VLDB Summer School 2013 49July 28, 2013

Distributed Transaction Commit
 Fundamental Problem:

◦ Transaction operates on multiple servers (resource
managers)

◦ Global commit needs unanimous local commits of all
participants (agents)

 Distributed system may fail partially:
◦ Server Crashes
◦ Network failures

 Potential danger of inconsistent decision:
◦ A Transaction commits at some servers
◦ But is aborted at some other servers

VLDB Summer School 2013 50July 28, 2013

Atomic Commitment

 Distributed handshake protocol known as two-
phase commit (2PC):
◦ A coordinator (theTransaction Manager) takes the

responsibility of unanimous decision: COMMIT or
ABORT

◦ All database servers are the cohorts in this protocol
and become dependent on the coordinator

VLDB Summer School 2013 51July 28, 2013

Getting Married over the Network

VLDB Summer School 2013

Will you ... ? Will you .. ?

Yes! Yes!

Married!

52July 28, 2013

Atomic Commitment

 At commit time, the coordinator requests
votes from all participants.
 Atomic commitment requires:

◦ All processes reach same decision
◦ Commit only if all processes vote Yes.
◦ If there are no failures and all processes voteYes,

decision will be commit.

53VLDB Summer School 2013July 28, 2013

Two Phase Commit (2PC)

 Coordinator
◦ send vote-request

◦ Collect votes. If all Yes, then
Commit, else Abort.

◦ Send decision

 Participant

◦ receive vote-request
◦ sendYes or No

◦ receive decision

54VLDB Summer School 2013July 28, 2013

Failures and Blocking

 What does a process do if it does not receive a
message it is expecting? I.e., on timeout?

 3 cases:
◦ participant waiting for vote-request abort
◦ coordinator waiting for vote abort
◦ participant waiting for decision

uncertain

 Note: coordinator never uncertain

55VLDB Summer School 2013July 28, 2013

Termination Protocol

 Can participant find help from other participants?

 Send to all participants: ``Help! What is decision?’’
◦ if any participant has committed or aborted

send commit or abort decision.
◦ If a participant has not yet voted

abort and send abort decision.
◦ If all participants voted Yes

all live participants uncertain

 Transaction BLOCKED! 

56VLDB Summer School 2013July 28, 2013

Distributed Commit

 Cause of significant complexity

 Failures of another site cause local data to
become unavailable

 Most commercial database provide 2PC but
in practice 2PC not used

VLDB Summer School 2013 57July 28, 2013

Transaction in Distributed DBMSs

 Significant overhead in managing correct
executions
 Reliance on a global synchronization mechanism
 Limits scalability
 Impacts fault-tolerance and data availability
 Logistics

◦ Sacrifices autonomy significant hurdle in large
enterprises

 Combination of all these factors made distributed
databases less practical

VLDB Summer School 2013 58July 28, 2013

CONCEPTS FROM
DISTRIBUTED SYSTEMS

July 28, 2013 VLDB Summer School 2013 59

Distributed System Models

 Synchronous System: Known bounds on
times for message transmission,
processing, on local clock drifts, etc.
◦ Can use timeouts
 Asynchronous System: No known

bounds on times for message
transmission, processing, on local clock
drifts, etc.
◦ More realistic, practical, but no timeouts

VLDB Summer School 2013 60July 28, 2013

Outline

 Concept of logical timing in distributed
systems

 Quorums

 Leader Election

 Consensus and Paxos

July 28, 2013 VLDB Summer School 2013 61

What is a Distributed System?

 A simple model of a distributed
system proposed by Lamport in a
landmark 1978 paper:
 “Time, Clocks and the Ordering of

Events in a Distributed System”
Communications of the ACM

VLDB Summer School 2013 62July 28, 2013

What is a Distributed System?

 A set of processes that communicate using
message passing
 A process is a sequence of events
 3 kinds of events:

◦ Local events
◦ Send events
◦ Receive events

 Local events on a process for a total order

VLDB Summer School 2013 63July 28, 2013

Happens Before Order on Events

 Event e happens before (causally precedes)
event f, denoted e→ f if:
1. The same process executes e before f ; or
2. e is send(m) and f is receive(m); or
3. Exists h so that e→ h and h→ f

We define concurrent, e || f, as:
¬(e→ f  f→ e)

VLDB Summer School 2013 64July 28, 2013

Lamport Logical Clocks

• Assign “clock” value to each event
– if ab then clock(a) < clock(b)

• Assign each process a clock “counter”.
–Clock must be incremented between any two

events in the same process
–Each message carries the sender’s clock value

• When a message arrives set local clock to:
– max(local value, message timestamp + 1)

July 28, 2013 VLDB Summer School 2013 65

Example of a Logical Clock

VLDB Summer School 2013 66July 28, 2013

p1

p2

p3

p4

(3)

(2)

(0) (2)

(1)

(4)

(5)

(0) (1)

(1)

Vector clocks
1. Vector initialized to 0 at each process

Vi [j] = 0 for i, j =1, …, N
2. Process increments its element of the vector

in local vector before event:
Vi [i] = Vi [i] +1

3. Piggyback Vi with every message sent from
process Pi

4. When Pj receives message, compares vectors
element by element and sets local vector to
higher of two values

Vj [i] = max(Vi [i],Vj [i]) for i=1, …, N

VLDB Summer School 2013 67July 28, 2013

Example of a Vector Clock

July 28, 2013 VLDB Summer School 2013 68

p1

p2

p3

p4

(0,1,0,0)

(1,1,0,0) (2,1,0,0)

(0,2,0,0)

(0,0,0,1)

(0,0,0,1)

(2,1,0,1) (2,1,1,1)

(0,0,0,2)

(2,2,1,1)

Quorums

• Many distributed actions need to contact
multiple servers

• What if there are failures?
• Do we need to communicate with ALL processes?

• A quorum is the minimum number of votes
needed for a distributed operation

• Any two requests should have a common
process to act as an arbitrator.

• Let process pi (pj)request permission from Vi (Vj),
then

–Vi ⋂ Vj ≠ ϕ.
• Vi is called a quorum.

VLDB Summer School 2013 69July 28, 2013

Quorums

 Given n processes: 2|Vi| >n, ie,

 In general, majority, ie ⌈(n/2)⌉. [Gifford 79]

VLDB Summer School 2013 70July 28, 2013

General Quorums

• In a database context, we have read and
write operations. Hence, read quorums,
Qr, and write quorums, Qw.

• Simple generalization:
–Qr⋂ Qw ≠ϕ, Qw ⋂ Qw ≠ϕ
–Qr + Qw> n and 2 Qw > n

July 28, 2013 VLDB Summer School 2013 71

Leader Election

 Many distributed algorithms need one
process to act as coordinator
◦ Doesn’t matter which process does the job,

just need to pick one

 Election algorithms: technique to pick a
unique coordinator (aka leader election)
 Types of election algorithms: Bully and

Ring algorithms

VLDB Summer School 2013 72July 28, 2013

Bully Algorithm

• Each process has a unique numerical ID
• Processes know Ids and address of all other

process
• Communication is assumed reliable
• Key Idea: select process with highest ID
• Process initiates election if it just recovered

from failure or if coordinator failed
• 3 message types: election, OK, I won
• Processes can initiate elections simultaneously

– Need consistent result

VLDB Summer School 2013 73July 28, 2013

Bully Algorithm Details

 Any process P can initiate an election
 P sends Election messages to all process

with higher Ids and awaits OK messages
 If no OK messages, P becomes

coordinator & sends I won to all process
with lower Ids
 If it receives OK, it drops out & waits for

I won
 If a process receives Election msg, it

returns OK and starts an election
 If a process receives I won then sender

is coordinator
VLDB Summer School 2013 74July 28, 2013

Bully Algorithm Example

a) Process 4 holds an election
b) Process 5 and 6 respond, telling 4 to stop
c) Now 5 and 6 each hold an election

VLDB Summer School 2013 75July 28, 2013

Bully Algorithm Example

d) Process 6 tells 5 to stop
e) Process 6 wins and tells everyone

VLDB Summer School 2013 76July 28, 2013

Consensus
 Consensus requires agreement among a number of

processes for a single data value
 Processes may fail or be unreliable
 Properties of consensus

◦ Termination
 Every correct process decides some value

◦ Validity
 If all correct processes propose the same value v, then all correct

processes decide v
◦ Integrity
 Every correct process decides at most one value, and if it decides

some value v, then v must have been proposed by some process
◦ Agreement
 Every correct process must agree on the same value

July 28, 2013 VLDB Summer School 2013 77

Paxos

 Lamport the archeologist and the “Part-time
Parliament” of Paxos:
◦ The Part-time Parliament, TOCS 1998
◦ Paxos Made Simple, ACM SIGACT News 2001.
◦ Paxos Made Live, PODC 2007
◦ Paxos Made Moderately Complex, (Cornell)

2011.

◦……..

VLDB Summer School 2013 78July 28, 2013

The Paxos Algorithm

 Leader based: each process has an estimate
of who is the current leader
 To order an operation, a process sends it to

current leader
 The leader sequences the operation and

launches a Consensus algorithm to fix the
agreement

VLDB Summer School 2013 79July 28, 2013

Thanks to Idit Keidar for slides

The Consensus Algorithm Structure

 Two phases
 Leader contacts a majority in each phase
 There may be multiple concurrent leaders
 Ballots distinguish among values proposed by

different leaders
◦ Unique, locally monotonically increasing
◦ Processes respond only to leader with highest ballot seen

so far

July 28, 2013 VLDB Summer School 2013 80

The Two Phases of Paxos

 Phase 1: prepare
◦ If you believe you are the leader
 Choose new unique ballot number
 Learn outcome of all smaller ballots from majority

 Phase 2: accept
◦ Leader proposes a value with its ballot number
◦ Leader gets majority to accept its proposal

◦ A value accepted by a majority can be decided

VLDB Summer School 2013 81July 28, 2013

In Failure-Free Execution

1 1

2

n

.

.

.

(“accept”, 1,1 ,v1)

1

2

n

.

.

.

1 1

2

n

.

.

.

(“prepare”, 1,1)

(“ack”, 1,1, 0,0,^)

decide v1

(“accept”, 1,1 ,v1)

VLDB Summer School 2013 82July 28, 2013

Why is this phase needed?

Performance?

1 1

2

n

.

.

.

(“accept”, 1,1 ,v1)

1

2

n

.

.

.

1 1

2

n

.

.

.

(“prepare”, 1,1)

(“ack”, 1,1, 0,0,^)

(“accept”, 1,1 ,v1)

VLDB Summer School 2013 83July 28, 2013

Failure-Free Execution

11 1

2

n

.

.

.

C

1

2

n

.

.

.

1

2

n

.

.

.
(“accept”)(“prepare”) (“ack”)

C

Phase 1 Phase 2

request response

VLDB Summer School 2013 84July 28, 2013

Observation

 In Phase 1, no consensus values are sent:
◦ Leader chooses largest unique ballot number
◦ Gets a majority to “vote” for this ballot number
◦ Learns the outcome of all smaller ballots

 In Phase 2, leader proposes its own initial
value or latest value it learned in Phase 1

VLDB Summer School 2013 85July 28, 2013

Failure free execution

11 1

2

n

.

.

.

C

1

2

n

.

.

.

1

2

n

.

.

.
(“accept”)(“prepare”) (“ack”)

C

Phase 1 Phase 2

request response

1

VLDB Summer School 2013 86July 28, 2013

Optimization

 Run Phase 1 only when the leader changes
◦ Phase 1 is called “view change” or “recovery

mode”
◦ Phase 2 is the “normal mode”

 Each message includes BallotNum (from the
last Phase 1) and ReqNum
 Respond only to messages with the “right”

BallotNum

VLDB Summer School 2013 87July 28, 2013

Summary

 Concept of logical timing in distributed
systems

◦ Lamport Clocks

◦ Vector Clocks

 Quorums

 Leader Election

 Consensus and Paxos

July 28, 2013 VLDB Summer School 2013 88

P2P SYSTEMS

July 28, 2013 VLDB Summer School 2013 89

Searching for distributed data

 Goal: Make billions of objects available to
millions of concurrent users
◦ e.g., music files
 Need a distributed data structure to keep

track of objects on different sires.
◦ map object to locations
 Basic Operations:

◦ Insert(key)
◦ Lookup(key)

VLDB Summer School 2013 90July 28, 2013

Searching

Internet

N1
N2 N3

N6N5
N4

Publisher

Key=“title”
Value=MP3 data… Client

Lookup(“title”)

?

VLDB Summer School 2013 91July 28, 2013

Simple Solution

 First There was Napster
◦ Centralized server/database for lookup
◦ Only file-sharing is peer-to-peer, lookup is not

 Launched in 1999, peaked at 1.5 million
simultaneous users, and shut down in July
2001.

VLDB Summer School 2013 92July 28, 2013

Napster: Publish

I have X, Y, and Z!

Publish

insert(X,
123.2.21.23)

...

123.2.21.23

VLDB Summer School 2013 93July 28, 2013

Napster: Search

Where is file A?

Query Reply

search(A)
-->
123.2.0.18Fetch

123.2.0.18

VLDB Summer School 2013 94July 28, 2013

Distributed Hash Tables (DHTs)
 Nodes store table entries

◦ lookup(key) returns the location of the node
currently responsible for this key

We will discuss Chord
◦ [Stoica, Morris, Karger, Kaashoek, and

Balakrishnan SIGCOMM 2001]
Other examples:

◦ CAN (Berkeley),
◦ Tapestry (Berkeley),
◦ Pastry (Microsoft Cambridge)

July 28, 2013 VLDB Summer School 2013 95

Chord Logical Structure (MIT)

• m-bit ID space (2m IDs), usually m=160.
• Nodes organized in a logical ring according

to their IDs.

N1
N8

N10

N14

N21

N30
N38

N42

N48

N51
N56

96

Consistent Hashing Guarantees

• For any set of N nodes and K keys:
–A node is responsible for at most (1 + )K/N

keys
–When an (N + 1)st node joins or leaves,

responsibility for O(K/N) keys changes hands
• For the scheme described above,  =

O(logN)
•  can be reduced to an arbitrarily small

constant by having each node run (logN)
virtual nodes, each with its own identifier.

VLDB Summer School 2013 97July 28, 2013

Finger Table

N80

1/21/4

1/8

1/16
1/32
1/64
1/128

• Entry i in the finger table of node n is the first node that succeeds or
equals n + 2i

• In other words, the ith finger points 1/2n-i way around the ring

VLDB Summer School 2013 98July 28, 2013

DHT: Chord Routing
Upon receiving a query
for item id, a node:

◦ Checks whether stores
the item locally?

◦ If not, forwards the query
to the largest node in its
successor table that does
not exceed id 0

1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

query(7)

VLDB Summer School 2013 99July 28, 2013

P2P Lessons

 Decentralized architecture
 Avoid centralization
 Flooding can work.
 Logical overlay structures provide strong

performance guarantees.
 Churn a problem.
 Useful in many distributed contexts

VLDB Summer School 2013 100July 28, 2013

KEY VALUE STORES

July 28, 2013 VLDB Summer School 2013 101

Overview

 Design Choices and their Implications

 Common Key-value Store examples

◦ Bigtable

◦ PNUTs

◦ Dynamo

 Discussion

July 28, 2013 VLDB Summer School 2013 102

Key Value Stores

 Gained widespread popularity
◦ In house: Bigtable (Google), PNUTS (Yahoo!),

Dynamo (Amazon)
◦ Open source: HBase, Hypertable, Cassandra,

Voldemort
 Challenges

◦ Request routing
◦ Cluster management
◦ Fault-tolerance and data replication

VLDB Summer School 2013 103July 28, 2013

Key Value Data Models
 Data model

◦ Key is the unique identifier
◦ Key-value is the granularity for consistent access
◦ Value can be structured or unstructured

 Bigtable
◦ Sparse multidimensional sorted map
 Tables comprise of column families
 Values indexed by the key, column family, column, and timestamp

 PNUTS
◦ Flat column structure

 Dynamo
◦ Un-interpreted string of bytes (blob)

July 28, 2013 VLDB Summer School 2013 104

BigTableVisual Illustration

WebTable Example: URLs are row keys, various aspects of
web pages as column names, eg, “contents” stores contents
of webpages versions indexed by timestamp.

VLDB Summer School 2013 105July 28, 2013

Different Design Goals

 Bigtable (Google):
◦ Scale-out for single-key access and range scans
◦ Support for crawl and indexing infrastructure

 PNUTS (Yahoo!):
◦ Geographic replication for high read availability
◦ Support for geographically distributed clients

 Dynamo (Amazon):
◦ High write availability
◦ Support for shopping carts (e-commerce)

VLDB Summer School 2013 106July 28, 2013

Request Routing

 To determine which storage unit has a
record:
◦ Hierarchical approach
 Bigtable (Range partitioned)
 B+-tree stores mapping of key ranges to servers

◦ Explicit storing of mapping
 PNUTS (Range or hash partitioned)
 Tablet controller stores interval mapping of partitions to servers
 Routing layer responsible for request routing

◦ Distributed Hash Table approach
 Dynamo (Hash partitioned)
 Consistent hashing a la Chord.

July 28, 2013 107VLDB Summer School 2013

Cluster Management

Monitoring nodes, failures, recovery
and load balancing
 Centralized, master based

◦ Bigtable
 Master contacts Chubby for node recovery.

◦ PNUTS
 Tablet controller

 Decentralized, gossip based
◦ Dynamo
 Sloppy quorums

July 28, 2013 VLDB Summer School 2013 108

Fault-tolerance and Data Replication
 Modular Shared Storage Design

◦ Bigtable
 Fault-tolerant storage: Google File System (GFS)
 Strong replica consistency

 Explicit Replication
◦ PNUTS
 Reliable pub/sub system:Yahoo! Message Broker (YMB)
 Single object timeline consistency for replicas
 Per-record master for fine-grain control of locality of writes

◦ Dynamo
 Asynchronous replication using quorums
 Eventual consistency
 Divergent versions reconciled by application using vector clocks

July 28, 2013 VLDB Summer School 2013 109

Design Principles

What have we learned from
Key-value stores?

Design Principles

 Separate System and Application State
◦ System metadata is critical but small
◦ Application data has varying needs
◦ Separation allows use of different class of protocols

July 28, 2013 111VLDB Summer School 2013

Design Principles
 Decouple Ownership from Data Storage

◦ Ownership is exclusive read/write access to data
◦ Decoupling allows lightweight ownership migration

July 28, 2013 112

Cache ManagerCache Manager

Transaction
Manager

Transaction
Manager

RecoveryRecovery

Ownership
[Multi-step transactions or

Read/Write Access]

Ownership
[Multi-step transactions or

Read/Write Access]

Storage

Classical DBMSs Decoupled ownership and
Storage

VLDB Summer School 2013

Design Principles
 Limit most interactions to a single node

◦ Allows horizontal scaling
◦ Graceful degradation during failures
◦ No distributed synchronization

July 28, 2013 113Thanks: Curino et al VLDB 2010VLDB Summer School 2013

Design Principles

 Limited distributed synchronization is
practical
◦ Maintenance of metadata
◦ Provide strong guarantees only for data that needs it

July 28, 2013 114VLDB Summer School 2013

Bigtable

 Shared-nothing architecture consisting of
thousands of nodes (commodity PC).

Google File System

Bigtable Servers

…….

VLDB Summer School 2013 115July 28, 2013

Bigtable

 Data model (a schema).
◦ A sparse, distributed persistent multi-dimensional

sorted map

 Data is partitioned across the nodes seamlessly.
 The map is indexed by a row key, column key,

and a timestamp.
 Output value in the map is an un-interpreted

array of bytes.
◦ (row: byte[], column: byte[], time: int64) byte[]

VLDB Summer School 2013 116July 28, 2013

Column Families

 Column keys are grouped into sets called
column families (nested tables).
 A column family must be created before

data can be stored in a column key.
 A unit of storage co-location.
 Hundreds of static column families.
 Syntax is family:qualifier:

◦ Language:English
◦ Language:German

VLDB Summer School 2013 117July 28, 2013

Bigtable API

 Implements interfaces to:
◦ create and delete tables and column families,
◦ modify cluster, table, and column family metadata

such as access control rights,
◦ Write or delete values in Bigtable,
◦ Lookup values from individual rows,
◦ Iterate over a subset of the data in a table,
◦ Atomic R-M-W sequences on data in a single

row key (No support for TXN across multiple
rows).

VLDB Summer School 2013 118July 28, 2013

Example

// open the table
Table *T =OpenOrDie(“/bigtable/web/webtable”);

//write a new anchor and delete an old anchor
RowMutation R1(T, “www.cnn.com”);
R1.set(“anchor:www.c-span.org”, “cnn”);
R1.delete(“anchor:www.abc.com”);
Operation &op;
APPLY(&op, &R1);

VLDB Summer School 2013 119July 28, 2013

Bigtable’s Building Blocks

 Google File System (GFS)
◦ Highly available distributed file system that stores

log and data files

 SSTable
◦ Stores Bigtable data by providing a persistent

immutable mapping from keys to values .

 Chubby
◦ Highly available persistent distributed lock

manager.

VLDB Summer School 2013 120July 28, 2013

Routing: 3 Level Hierarchy

VLDB Summer School 2013 121

Metadata is also small:
• Each meta-data row stores ~
1KB of data,
• With 128 MB meta-data
tablets, we can address 234

tablets.
• Approaches a Zetabyte (106

Petabytes).
July 28, 2013

Chubby

 A persistent and distributed lock service.
 Consists of 5 active replicas:

◦ One replica is elected master and serves
requests

◦ Live: as long as majority available
◦ Paxos is used to keep copies consistent

 Maintains strictly consistent namespaces
◦ Small files, which are used as locks
◦ Reads and writes are atomic.

VLDB Summer School 2013 122July 28, 2013

SSTable
 A file format used to store Bigtable data:

◦ Stores and retrieves key/data pairs.
◦ Supports iterating over key/value pairs given a

selection predicate (exact and range).
◦ Each SSTable contains a sequence of blocks + a

block index (loaded in memory on opening)
◦ Lookup: use in-memory index to locate block

 An SSTable is stored in GFS.

VLDB Summer School 2013 123

Index

64K
block

64K
block

64K
block

SSTable

July 28, 2013

Tablets in Bigtable
 Bigtable maintains data in lexicographic

order by row key, range partitioned into
tablets
 A tablet is represented a set of SSTable files.
 Tablet is unit of distribution and load-

balancing.

VLDB Summer School 2013 124

Index

64K
block

64K
block

64K
block

SSTable

Index

64K
block

64K
block

64K
block

SSTable

Tablet Start:aardvark End:apple

July 28, 2013

Tables

 A table is dynamically partitioned into tablets
 SSTables can be shared
 Tablets do not overlap, SSTables can overlap

VLDB Summer School 2013 125

SSTable SSTable SSTable SSTable

Tablet

aardvark apple

Tablet

apple_two_E boat

July 28, 2013

Bigtable’s 3 Major Components
1. A Bigtable library linked into every client.
2. One Master Server responsible for:

◦ Assigning tablets to tablet servers,
◦ Detecting the addition and deletion of tablet servers,
◦ Balancing tablet-server load,

3. Many tablet servers:
◦ Each manages ten to a thousand tablets.
◦ Handles read and writes to its tablet and splits tablets.
◦ Tablet servers are added and removed dynamically.

 Client communicates directly with tablet servers for
reads/writes (not thru master).

 Bigtable cluster stores a number of tables, each table
consists of a set of tablets and a tablet contains a row
range

VLDB Summer School 2013 126July 28, 2013

Bigtable and Chubby
 Bigtable uses Chubby to keep track of tablet servers:

◦ Ensure there is at most one active master at a time,
◦ Store the bootstrap location of Bigtable data (Root

tablet),
◦ Discover tablet servers and finalize tablet server deaths,
◦ Store Bigtable schema information (column family info.),
◦ Store access control list.

 If Chubby becomes unavailable for an extended
period of time, Bigtable becomes unavailable.

VLDB Summer School 2013 127July 28, 2013

Tablet Operations

 Tablet recovery:
◦ Server reads metadata from METADATA table
◦ Server reads indices of SSTables into memory and reconstructs

memtable

 Write operation:
◦ A log record is generated to the commit log file of redo

records
◦ Once the write commits, its contents are inserted into the

memtable.

 Read operation:
◦ Server ensures client has privileges for the read operation

(Chubby),
◦ Read is performed on a merged view of (a) the SSTables that

constitute the tablet, and (b) the memtable.

VLDB Summer School 2013 128July 28, 2013

Highlights of Bigtable

 Separate storage layer from data
management.
 Restrict activity to one server.
 Key-value store with column families.
 Fault-tolerance achieved through:

◦ Chubby
◦ GFS

 Master-based approach for server/tablet
management

VLDB Summer School 2013 129July 28, 2013

PNUTS Overview

 Massively parallel and geographically
distributed database system.
 Data organized as hashed or ordered

tables.
 Low latency for concurrent updates and

queries
 Novel per-read consistency
 Centrally managed, geographically distributed,

automated load-balancing and failover

VLDB Summer School 2013 130July 28, 2013

PNUTS Overview

 Data Model:
◦ Simple relational model—really key-value store.
◦ Single-table scans with predicates

 Fault-tolerance:
◦ Redundancy at multiple levels: data, meta-data etc.
◦ Leverages relaxed consistency for high availability:

reads & writes despite failures

 Pub/Sub Message System:
◦ Yahoo! Message Broker for asynchronous updates

VLDB Summer School 2013 131July 28, 2013

PNUTS Overview

 Record-level Mastering:
◦ Asynchronous operations to enable record-level

mastering

 Hosting:
◦ Centrally managed database service
◦ Shared among many applications

VLDB Summer School 2013 132July 28, 2013

PNUTS Architecture

E 75656 C

A 42342 E
B 42521 W
C 66354 W
D 12352 E

F 15677 E

E 75656 C

A 42342 E
B 42521 W
C 66354 W
D 12352 E

F 15677 E

CREATE TABLE Parts (
ID VARCHAR,
StockNumber INT,
Status VARCHAR
…

)

CREATE TABLE Parts (
ID VARCHAR,
StockNumber INT,
Status VARCHAR
…

)

Parallel databaseParallel database Geographic replicationGeographic replication

Indexes and viewsIndexes and views

Structured, flexible schemaStructured, flexible schema

Hosted, managed infrastructureHosted, managed infrastructure

A 42342 E
B 42521 W
C 66354 W
D 12352 E
E 75656 C
F 15677 E

VLDB Summer School 2013 133July 28, 2013

Data Model

 Table of records with attributes
 “BLOB” is a valid data-type (exclude

image/audio etc.)
 Flexible schema:

◦ Attributes can be added dynamically
◦ (No mention of dropping attributes )
◦ Records not required to have values for all

attributes (i.e., integrity constraints minimal)

VLDB Summer School 2013 134July 28, 2013

Query model
 Per-record operations

◦ Get
◦ Set
◦ Delete

 Multi-record operations
◦ Multi-get
◦ Scan
◦ Get-range
 Caveats:

◦ No referential integrity
◦ No complex operations: joins, group-by, etc.

VLDB Summer School 2013 135July 28, 2013

Asynchronous replication

VLDB Summer School 2013 136July 28, 2013

Consistency Model

 Hide the complexity of data replication
 Between the two extremes:

◦ One-copy serializability, and
◦ Eventual consistency

 Key assumption:
◦ Applications manipulate one record at a time

 Per-record time-line consistency:
◦ All replicas of a record preserve the update

order

VLDB Summer School 2013 137July 28, 2013

Implementation

 A read returns a consistent version
 One replica designated as master (per

record)
 All updates forwarded to that master
 Master designation adaptive, replica with

most of writes becomes master
 A sequence number
 Only one version of record/replica

VLDB Summer School 2013 138July 28, 2013

API Calls
 Read-Any:

◦ Returns (possibly) a stale version of the record
 Read-Critical (required-version):

◦ Version ≥ required-version
 Read-latest:

◦ Executed at the master
 Write:

◦ ACID guarantees with a single write operation
 TestAndSet (required-version):

◦ Performs write if and only if the presented version =
required-version

 Synchronizes concurrent writers, optimistically

VLDB Summer School 2013 139July 28, 2013

Consistency model
 Goal: make it easier for applications to reason about updates and

cope with asynchrony

 What happens to a record with primary key “Brian”?

Time

Record
inserted

Update Update Update UpdateUpdate Delete

Time
v. 1 v. 2 v. 3 v. 4 v. 5 v. 7

Generation 1
v. 6 v. 8

Update Update

VLDB Summer School 2013 140July 28, 2013

Data-path componentsData-path components

Storage units

Routers
Tablet

controller

REST API

Clients

Message
Broker

Detailed architecture

VLDB Summer School 2013 141July 28, 2013

Storage unit 1 Storage unit 2 Storage unit 3

Request Routing

Router

Apple
Avocado
Banana
Blueberry

Canteloupe
Grape
Kiwi
Lemon

Lime
Mango
Orange

Strawberry
Tomato
Watermelon

MIN-Canteloupe SU1
Canteloupe-Lime SU3
Lime-Strawberry SU2
Strawberry-MAX SU1SU1Strawberry-MAX

SU2Lime-Strawberry

SU3Canteloupe-Lime

SU1MIN-Canteloupe

142

Updates

Write key k

Write key kSequence # for key k

Sequence # for key k

SU SU SU

Write key k

SUCCES
S

Write key k

Routers
Message brokers

VLDB Summer School 2013 143July 28, 2013

Highlights of PNUTS Approach

 Shared nothing architecture
 Multiple datacenter for geographic

distribution
 Time-line consistency and access to stale

data.
 Use a publish-subscribe system for reliable

fault-tolerant communication
 Replication with record-based master.

VLDB Summer School 2013 144July 28, 2013

Dynamo Design Rationale

 Most services need key-based access:
◦ Best-seller lists, shopping carts, customer

preferences, session management, sales rank,
product catalog, and so on.

 Prevalent application design based on
RDBMS technology will be catastrophic.
 Dynamo therefore provides primary-

key only interface.

VLDB Summer School 2013 145July 28, 2013

Dynamo Design Overview

 Data partitioning using consistent hashing
 Data replication
 Consistency via version vectors
 Replica synchronization via quorum protocol
 Gossip-based failure-detection and

membership protocol

VLDB Summer School 2013 146July 28, 2013

Striving for Application Performance

 Application can deliver
its functionality in a
bounded time
 Example SLA: service

guaranteeing that it will provide a
response within 300ms for 99.9%
of its requests for a peak client
load of 500 requests per second.

Service-oriented architecture of
Amazon’s platform

VLDB Summer School 2013 147July 28, 2013

Design Notes
 Optimistic/Asynchronous Replication:

◦ Leads to update conflicts
◦ Hence, need conflict resolution: eventual consistency

 When to resolve conflicts?
◦ Traditionally at the time of Write risk of aborts
◦ Reads simple

 Dynamo approach:
◦ Always writeable
◦ Conflict resolution complexity at Reads

 Who resolves the conflict:
◦ Data store: limited choices; syntactic: last write wins.
◦ Application: semantic: case-by case

VLDB Summer School 2013 148July 28, 2013

Design Notes

 Incremental scalability:
◦ Scale out: One storage node at a time

 Symmetry:
◦ Peer-based design
◦ Principle of equal responsibility

 Decentralization: decentralized Peer to Peer.
 Heterogeneity: in infrastructure.

VLDB Summer School 2013 149July 28, 2013

Summary of techniques

Problem Technique Advantage

Partitioning Consistent Hashing Incremental Scalability

High Availability for writes
Vector clocks with

reconciliation during reads
Version size is decoupled

from update rates.

Handling temporary failures
Sloppy Quorum and hinted

handoff

Provides high availability and
durability guarantee when

some of the replicas are not
available.

Recovering from permanent
failures

Anti-entropy using Merkle
trees

Synchronizes divergent
replicas in the background.

Membership and failure
detection

Gossip-based membership
protocol and failure

detection.

Preserves symmetry and
avoids having a centralized

registry for storing
membership and node
liveness information.

150

System Interface

 Two basic operations:
◦ Get(key):
 Locates replicas
 Returns the object + context (encodes meta data

including version)

◦ Put(key, context, object):
 Writes the replicas to the disk
 Context: version (vector timestamp)

 Hash(key) 128-bit identifier

VLDB Summer School 2013 151July 28, 2013

Data Partitioning and Routing

 Consistent hashing: the
output range of a hash function
is treated as a fixed circular
space or “ring” a la Chord.

 “Virtual Nodes”: Each node
can be responsible for more
than one virtual node (to deal
with non-uniform data and load
distribution)

VLDB Summer School 2013 152July 28, 2013

Virtual Nodes

VLDB Summer School 2013 153July 28, 2013

Replication

 Each data item is
replicated at N hosts.
 preference list:The list

of nodes that is
responsible for storing
a particular key.
 Some fine-tuning to

account for virtual
nodes

VLDB Summer School 2013 154July 28, 2013

Replication

VLDB Summer School 2013 155July 28, 2013

Replication

VLDB Summer School 2013 156July 28, 2013

Data Versioning

 A put() call may return to its caller before
the update has been applied at all the
replicas
 A get() call may return many versions of the

same object.
 Challenge: an object may have distinct versions

 Solution: use vector clocks in order to capture
causality between different versions of same
object.

VLDB Summer School 2013 157July 28, 2013

Vector Clock

 A vector clock is a list of (node, counter) pairs.
 Every version of every object is associated with

one vector clock.
 If the all counters on the first object’s clock are

less-than-or-equal to all of the counters in the
second clock, then the first is an ancestor of
the second and can be forgotten.
 Application reconciles divergent versions and

collapses into a single new version.

VLDB Summer School 2013 158July 28, 2013

Routing requests

 Route request through a generic load
balancer that will select a node based on
load information.

 Use a partition-aware client library that
routes requests directly to relevant node.

 A gossip protocol propagates membership
changes. Each node contacts a peer
chosen at random every second and the
two nodes reconcile their membership
change histories.

VLDB Summer School 2013 159July 28, 2013

Sloppy Quorum

 R and W is the minimum number of nodes
that must participate in a successful
read/write operation.
 Setting R + W > N yields a quorum-like

system.
 In this model, the latency of a get (or put)

operation is dictated by the slowest of the R
(or W) replicas. For this reason, R and W are
usually configured to be less than N, to
provide better latency and availability.

VLDB Summer School 2013 160July 28, 2013

Discussion

 Three different approaches to designing
scalable data stores
 Many open-source variants inspired by these

designs
◦ HBase, Cassandra, Voldemort, Riak, …

 Main memory object stores are another
form of key-value store
◦ Memcached, Redis, …

July 28, 2013 VLDB Summer School 2013 161

References
 Leslie Lamport: Time, Clocks, and the Ordering of Events in

a Distributed System. Commun. ACM 21(7): 558-565 (1978)
 Mani Chandy, Leslie Lamport: Distributed Snapshots:

Determining Global States of Distributed Systems ACM
Trans. Comput. Syst. 3(1): 63-75 (1985)

 Gene T. J.Wuu, Arthur J. Bernstein: Efficient Solutions to the
Replicated Log and Dictionart Problems. PODC 1984: 233-
242

 Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert
Morris, and Ion Stoica. Looking up data in P2P systems. In
Communications of the ACM, February 2003

 Reliable Distributed Computing with the Isis Toolkit. K.
Birman and R. van Renesse, eds. IEEE Computer Society
Press, 1994.

July 28, 2013 VLDB Summer School 2013 162

 Leslie Lamport, Robert E. Shostak, Marshall C. Pease: The
Byzantine Generals Problem. ACM Trans. Program. Lang.
Syst. 4(3): 382-401 (1982)

 Leslie Lamport: The Part-Time Parliament. ACM Trans.
Comput. Syst. 16(2): 133-169 (1998)

 Michael J. Fischer, Nancy A. Lynch, Mike Paterson:
Impossibility of Distributed Consensus with One Faulty
Process. PODS 1983: 1-7

 Eric A. Brewer. Towards robust distributed systems.
(Invited Talk)Principles of Distributed Computing, July
2000.

VLDB Summer School 2013 163July 28, 2013

References

References

July 28, 2013 VLDB Summer School 2013 164

 Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra,
Fikes, Gruber: Bigtable: A Distributed Storage System for
Structured Data. OSDI 2006

 The Google File System: Sanjay Ghemawat, Howard Gobioff, and
Shun-Tak Leung. Symp on Operating Systems Princ 2003.

 GFS: Evolution on Fast-Forward: Kirk McKusick, Sean Quinlan
Communications of the ACM 2010.

 Cooper, Ramakrishnan, Srivastava, Silberstein, Bohannon,
Jacobsen, Puz, Weaver,Yerneni: PNUTS: Yahoo!'s hosted data
serving platform. VLDB 2008.

 DeCandia,Hastorun,Jampani, Kakulapati, Lakshman, Pilchin,
Sivasubramanian,Vosshall,Vogels: Dynamo: amazon's highly
available key-value store. SOSP 2007

 Cooper, Silberstein, Tam, Ramakrishnan, Sears: Benchmarking
cloud serving systems with YCSB. SoCC 2010

